#! /usr/bin/env python import scipy as s import pylab as p import scipy.integrate as si from scipy import stats #I need this module for the linear fit import smtplib from email.MIMEMultipart import MIMEMultipart from email.MIMEBase import MIMEBase from email.MIMEText import MIMEText from email import Encoders import os def mail(to, subject, text, attach): msg = MIMEMultipart() msg['From'] = gmail_user msg['To'] = to msg['Subject'] = subject msg.attach(MIMEText(text)) part = MIMEBase('application', 'octet-stream') part.set_payload(open(attach, 'rb').read()) Encoders.encode_base64(part) part.add_header('Content-Disposition', 'attachment; filename="%s"' % os.path.basename(attach)) msg.attach(part) mailServer = smtplib.SMTP("smtp.gmail.com", 587) mailServer.ehlo() mailServer.starttls() mailServer.ehlo() mailServer.login(gmail_user, gmail_pwd) mailServer.sendmail(gmail_user, to, msg.as_string()) # Should be mailServer.quit(), but that crashes... mailServer.close() def Brow_ker_cont_optim(Vlist): kern_mat=2.*k_B*T_0/(3.*mu)*(Vlist[:,s.newaxis]**(1./3.)+\ Vlist[s.newaxis,:]**(1./3.))**2./ \ (Vlist[:,s.newaxis]**(1./3.)*Vlist[s.newaxis,:]**(1./3.)) return kern_mat def coupling_optim_garrick(y,t): creation=s.zeros(n_bin) destruction=s.zeros(n_bin) #now I try to rewrite this in a more optimized way destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\ #the destruction of k-mers for k in xrange(n_bin): kyn = (kernel*f_garrick[:,:,k])*y[:,s.newaxis]*y[s.newaxis,:] creation[k] = s.sum(kyn) creation=0.5*creation out=creation+destruction return out #Now I work with the function for espressing smoluchowski equation when a uniform grid is used def coupling_optim(y,t): creation=s.zeros(n_bin) destruction=s.zeros(n_bin) #now I try to rewrite this in a more optimized way destruction = -s.dot(s.transpose(kernel),y)*y #much more concise way to express\ #the destruction of k-mers kyn = kernel*y[:,s.newaxis]*y[s.newaxis,:] for k in xrange(n_bin): creation[k] = s.sum(kyn[s.arange(k),k-s.arange(k)-1]) creation=0.5*creation out=creation+destruction return out #Now I go for the optimal optimization of the chi_{i,j,k} coefficients used by Garrick for # dealing with a non-uniform grid. def mycount_garrick(V): f=s.zeros((n_bin, n_bin, n_bin)) Vsum=V[:,s.newaxis]+V[s.newaxis,:] # matrix with the sum of the volumes in the bins for k in xrange(1,(n_bin-1)): f[:,:,k]=s.where((Vsum<=V[k+1]) & (Vsum>=V[k]), (V[k+1]-Vsum)/(V[k+1]-V[k]),\ f[:,:,k] ) f[:,:,k]=s.where((Vsum<=V[k]) & (Vsum>=V[k-1]),(Vsum-V[k-1])/(V[k]-V[k-1]),\ f[:,:,k]) return f def total_concentration(number_mat, box_volume): number= s.sum(number_mat,axis=1)*box_volume return number def total_mass_conservation(number_mat, vol_grid,box_volume): ini_mass=s.dot(number_mat[0,:],vol_grid)*box_volume fin_mass=s.dot(number_mat[-1,:],vol_grid)*box_volume mass_conservation=(ini_mass-fin_mass)/ini_mass results=s.array([ini_mass,fin_mass,mass_conservation]) return results def fitting_stat(x,y): slope, intercept, r, prob2, see = stats.linregress(x,y) if (len(x)>2): see=see*s.sqrt(len(x)/(len(x)-2.)) mx = x.mean() sx2 = ((x-mx)**2).sum() sd_intercept = see * s.sqrt(1./len(x) + mx*mx/sx2) sd_slope = see * s.sqrt(1./sx2) results=s.zeros(5) results[0]=slope results[1]=intercept results[2]=r if (len(x)>2): results[3]=sd_slope results[4]=sd_intercept return results #Now a list of the physical parameters needed to carry out the calculation n_mon=5000 #total number of monomers initial_density=0.01 #monomer density in the box box_vol=n_mon/initial_density #volume of the box containing the monomers r_mon=0.5 #radius of each monomer v_mono=4./3.*s.pi*r_mon**3. #volume of each monomer beta=1. #cluster-monomer 1/tau k_B=1. #in these units T_0=0.5 #temperature of the system m_mon=1. #monomer mass in these units sigma=1. #monomer diameter mu=(m_mon*beta)/(3.*s.pi*sigma) # fluid viscosity t=s.linspace(0.,1000.,1001) # choose time grid for time evolution #Specify the bin structure you want to use linear =1 #linear ==1---> use a linear bin structure and solve smoluchowski equation in standard form #linear !1---> use a non-linear (log-spaced) bin structure and solve smoluchowski equation # using the splitting operator k_max=1000 #maximum number of monomers I consider in a k_mer n_bin=200 # to be used only if a non-linear bin structure is used send_email=1 #tells whether you want to send an email with an attached # file # variables for sending emails gmail_user = "someaccount@gmail.com" #modify this using the account name and password of #your own gmail account gmail_pwd = "password" mailto = "robert.h.schingler@nasa.gov" mailtitle = "The job you submitted is done" mailtext = "This is an automatically-generated email, please do not reply" if (linear==1): mailattachment="evolution_number_of_monomers_linear_binning.pdf" else: mailattachment="evolution_number_of_monomers_nonlinear_binning.pdf" if (linear == 1): k_list=s.linspace(1., k_max, k_max) #list of number I use to label each bin, i.e. size of the #corresponding monomer vol_grid=k_list*v_mono #volume of the particle in the k-th bin n_bin=len(k_list) #overwrite the number of bins elif (linear !=1): k_list=s.logspace(s.log10(1.), s.log10(k_max),n_bin) vol_grid=k_list*v_mono #volume of the particle in the k-th bin (this time the volume list is #nonlinear) if (linear !=1): #calculate the splitting operator on the non-uniform grid f_garrick=mycount_garrick(vol_grid) #I calculate the splitting operator on the grid #generate initial condition [monodisperse aerosol] y0=s.zeros(n_bin) y0[0]=initial_density #initial state (monodisperse aerosol) #Generate the kernel matrix kernel=Brow_ker_cont_optim(vol_grid) if (linear==1): solution = si.odeint(coupling_optim, y0, \ t,printmessg=1,rtol=1e-10,atol=1e-10) elif (linear!=1): solution = si.odeint(coupling_optim_garrick, y0, \ t,printmessg=1,rtol=1e-10,atol=1e-10) total_monomers=total_concentration(solution, box_vol) #now save the total number of monomers and the time in two separate files if (linear==1): p.save("number_monomers_linear_binning.dat", total_monomers) elif (linear !=1): p.save("number_monomers_nonlinear_binning.dat", total_monomers) p.save("time.dat", t) #check the quality of the simulation by testing mass conservation mass_tests=total_mass_conservation(solution, vol_grid,box_vol) print "initial and final total mass in the box are", mass_tests[0], mass_tests[1] ,"respectively" print "mass is conserved up to ", mass_tests[2]*100., "percent" #finally, perform some basic statistical analysis (fit decay of total number of clusters to a power-law) sel_late=s.where(t>800.) results=fitting_stat(s.log(t[sel_late]),s.log(total_monomers[sel_late])) power_decay=results[0] print "the exponent of the power-law decay [the theoretical value is -1] is, ", power_decay #finally, plot the results fig = p.figure() axes = fig.gca() axes.plot(t,total_monomers,"ro",linewidth=2.) p.xlabel('Time') p.ylabel('Total number of monomers') p.title('Evolution of the total number of monomers') p.grid(True) if (linear ==1 ): fig_name="evolution_number_of_monomers_linear_binning.pdf" elif (linear !=1): fig_name="evolution_number_of_monomers_nonlinear_binning.pdf" p.savefig(fig_name) p.clf() #Now send one of the generated plots automatically by email #NB: this will not work unless one really inputs its email login details mail(mailto,mailtitle, mailtext,mailattachment) print "Calculation ended."