This module provides access to a standardized implementation of SPICE (Stephen's Power-Inspired, Computerized Encryption).
This code has just been revised and rewritten. As such it may still contain bugs that were not found after testing the code.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | '''Module that implements SPICE.
This module provides access to a standardized implementation
of SPICE (Stephen's Power-Inspired, Computerized Encryption).'''
################################################################################
__version__ = '$Revision: 0 $'
__date__ = 'April 19, 2008'
__author__ = 'Stephen "Zero" Chappell <my.bios@gmail.com>'
__credits__ = '''\
T. Parker, for testing code that led to this module.
A. Baddeley, for contributing to the random module.
R. Hettinger, for adding support for two core generators.'''
################################################################################
import random as _random
import sys as _sys
################################################################################
def crypt_major():
'Create a new Major Key.'
return ''.join(map(chr, _crypt.sample(xrange(256), 256)))
def crypt_minor():
'Create a new Minor Key.'
sample = _crypt.sample(range(4) * 64, 256)
array = []
for index in xrange(64):
bits_12 = sample[index * 4] << 6
bits_34 = sample[index * 4 + 1] << 4
bits_56 = sample[index * 4 + 2] << 2
bits_78 = sample[index * 4 + 3]
array.append(bits_12 + bits_34 + bits_56 + bits_78)
return ''.join(map(chr, array))
################################################################################
def named_major(name):
'Create a named Major Key.'
_namer.seed(name)
return ''.join(map(chr, _namer.sample(xrange(256), 256)))
def named_minor(name):
'Create a named Minor Key.'
_namer.seed(name)
sample = _namer.sample(range(4) * 64, 256)
array = []
for index in xrange(64):
bits_12 = sample[index * 4] << 6
bits_34 = sample[index * 4 + 1] << 4
bits_56 = sample[index * 4 + 2] << 2
bits_78 = sample[index * 4 + 3]
array.append(bits_12 + bits_34 + bits_56 + bits_78)
return ''.join(map(chr, array))
################################################################################
def encode_string(string, major, minor):
'Return an encrypted string.'
assert isinstance(string, str)
_check_major(major)
_check_minor(minor)
map_1 = _encode_map_1(major)
map_2 = _encode_map_2(minor)
return _encode(string, map_1, map_2)
def decode_string(string, major, minor):
'Return a decrypted string.'
assert isinstance(string, str) and len(string) % 4 == 0
_check_major(major)
_check_minor(minor)
map_1 = _decode_map_1(minor)
map_2 = _decode_map_2(major)
return _decode(string, map_1, map_2)
################################################################################
def encode_file(source, destination, major, minor):
'Encrypt a file from source to destination.'
_check_major(major)
_check_minor(minor)
map_1 = _encode_map_1(major)
map_2 = _encode_map_2(minor)
string = source.read(2 ** 20 / 5)
while string:
destination.write(_encode(string, map_1, map_2))
string = source.read(2 ** 20 / 5)
def decode_file(source, destination, major, minor):
'Decrypt a file from source to destination.'
_check_major(major)
_check_minor(minor)
map_1 = _decode_map_1(minor)
map_2 = _decode_map_2(major)
string = source.read(2 ** 20 / 5 * 4)
while string:
tail_len = len(string) % 4
if tail_len == 0:
destination.write(_decode(string, map_1, map_2))
string = source.read(2 ** 20 / 5 * 4)
else:
destination.write(_decode(string[:-tail_len], map_1, map_2))
return string[-tail_len:]
return ''
################################################################################
class File_Crypt:
'File_Crypt(major, minor, name, mode) -> File_Crypt'
def __init__(self, major, minor, name, mode):
'Initialize the File_Crypt object.'
_check_major(major)
_check_minor(minor)
self.__em1 = _encode_map_1(major)
self.__em2 = _encode_map_2(minor)
self.__dm1 = _decode_map_1(minor)
self.__dm2 = _decode_map_2(major)
assert len(mode) == 1 and mode in 'raw'
self.__file = open(name, mode + 'b', 0)
self.tail = ''
def read(self, size=-1):
'Read and decrypt from file.'
string = self.__file.read(size * 4)
tail_len = len(string) % 4
if tail_len:
self.tail = string[-tail_len:]
return _decode(string[:-tail_len], self.__dm1, self.__dm2)
else:
return _decode(string, self.__dm1, self.__dm2)
def write(self, string):
'Encrypt and write to file.'
self.__file.write(_encode(string, self.__em1, self.__em2))
def seek(self, offset, whence=0):
'Seek to virtual positon in file.'
self.__file.seek(offset * 4, whence)
offset = self.__file.tell() / 4
self.__file.seek(offset * 4)
def tell(self):
'Return the virtual position in file.'
return self.__file.tell() / 4
def close(self):
'Close the File_Crypt object.'
self.__file.close()
################################################################################
class Socket_Crypt:
'Socket_Crypt(major, minor, socket) -> Socket_Crypt'
def __init__(self, major, minor, socket):
'Initialize the Socket_Crypt object.'
_check_major(major)
_check_minor(minor)
self.__em1 = _encode_map_1(major)
self.__em2 = _encode_map_2(minor)
self.__dm1 = _decode_map_1(minor)
self.__dm2 = _decode_map_2(major)
self.__major = major
self.__minor = minor
self.__socket = socket
self.__tail = ''
self.__tails = {}
def accept(self):
'Return a new Socket_Crypt and address.'
conn, address = self.__socket.accept()
return Socket_Crypt(self.__major, self.__minor, conn), address
def recv(self, size, flags=0):
'Receive and decrypt off socket.'
string = self.__tail + self.__socket.recv(size * 4, flags)
tail_len = len(string) % 4
if tail_len:
self.__tail = string[-tail_len:]
return _decode(string[:-tail_len], self.__dm1, self.__dm2)
else:
self.__tail = ''
return _decode(string, self.__dm1, self.__dm2)
def recvfrom(self, size, flags=0):
'Receive datagram and decrypt off socket.'
string, address = self.__socket.recvfrom(size * 4, flags)
string = self.__tails.get(address, '') + string
tail_len = len(string) % 4
if tail_len:
self.__tails[address] = string[-tail_len:]
string = _decode(string[:-tail_len], self.__dm1, self.__dm2)
return string, address
else:
if address in self.__tails:
del self.__tails[address]
string = _decode(string, self.__dm1, self.__dm2)
return string, address
def send(self, string, flags=0):
'Encrypt and send on socket.'
string = _encode(string, self.__em1, self.__em2)
sent = self.__socket.send(string, flags)
offset = sent % 4
if offset:
string = string[sent:][:4-offset]
sent += len(string)
while string:
string = string[self.__socket.send(string, flags):]
return sent / 4
def sendall(self, string, flags=0):
'Encrypt and send all on socket.'
string = _encode(string, self.__em1, self.__em2)
return self.__socket.sendall(string, flags)
def sendto(self, string, address, flags=0):
'Encrypt and send datagram on socket.'
string = _encode(string, self.__em1, self.__em2)
sent = self.__socket.sendto(string, flags, address)
offset = sent % 4
if offset:
string = string[sent:][:4-offset]
sent += len(string)
while string:
string = string[self.socket.sentto(string, flags, address):]
return sent / 4
def makefile(self, mode='r', bufsize=-1):
'Return a file-like object.'
return self
def read(self, size=-1):
'Read and decrypt from socket.'
if size < 0:
cache = ''
while True:
temp = self.recv(2 ** 10)
if temp:
cache += temp
else:
return cache
else:
return self.recv(size)
def readline(self, size=-1):
'Dummy attribute for cPickle.'
raise NotImplementedError
def write(self, string):
'Encrypt and write to socket.'
self.sendall(string)
################################################################################
class String_Crypt:
'String_Crypt(major, minor) -> String_Crypt'
def __init__(self, major, minor):
'Initialize the String_Crypt object.'
_check_major(major)
_check_minor(minor)
self.__em1 = _encode_map_1(major)
self.__em2 = _encode_map_2(minor)
self.__dm1 = _decode_map_1(minor)
self.__dm2 = _decode_map_2(major)
def encode(self, string):
'Return an encrypted string.'
assert isinstance(string, str)
return _encode(string, self.__em1, self.__em2)
def decode(self, string):
'Return a decrypted string.'
assert isinstance(string, str) and len(string) % 4 == 0
return _decode(string, self.__dm1, self.__dm2)
################################################################################
_crypt = _random.SystemRandom()
_namer = _random.Random()
################################################################################
def _check_major(key):
'Private module function.'
assert isinstance(key, str) and len(key) == 256
for character in map(chr, xrange(256)):
assert character in key
def _check_minor(key):
'Private module function.'
assert isinstance(key, str) and len(key) == 64
indexs = []
for byte in map(ord, key):
for shift in xrange(6, -2, -2):
indexs.append((byte >> shift) & 3)
for index in xrange(4):
assert indexs.count(index) == 64
def _encode_map_1(major):
'Private module function.'
return map(ord, major)
def _encode_map_2(minor):
'Private module function.'
map_2 = [[], [], [], []]
array = []
for byte in map(ord, minor):
for shift in xrange(6, -2, -2):
array.append((byte >> shift) & 3)
for byte, index in enumerate(array):
map_2[index].append(chr(byte))
return map_2
def _decode_map_1(minor):
'Private module function.'
map_1 = []
for byte in map(ord, minor):
for shift in xrange(6, -2, -2):
map_1.append((byte >> shift) & 3)
return map_1
def _decode_map_2(major):
'Private module function.'
map_2 = [None] * 256
for byte, index in enumerate(map(ord, major)):
map_2[index] = chr(byte)
return map_2
def _encode(string, map_1, map_2):
'Private module function.'
cache = ''
for character in string:
byte = map_1[ord(character)]
for shift in xrange(6, -2, -2):
cache += map_2[(byte >> shift) & 3][_crypt.randrange(64)]
return cache
def _decode(string, map_1, map_2):
'Private module function.'
cache = ''
iterator = iter(string)
for byte in iterator:
bits_12 = map_1[ord(byte)] << 6
bits_34 = map_1[ord(iterator.next())] << 4
bits_56 = map_1[ord(iterator.next())] << 2
bits_78 = map_1[ord(iterator.next())]
cache += map_2[bits_12 + bits_34 + bits_56 + bits_78]
return cache
################################################################################
if __name__ == '__main__':
_sys.stdout.write('Content-Type: text/plain\n\n')
_sys.stdout.write(file(_sys.argv[0]).read())
|
Tags: algorithms