'sparse' is a matrix class based on a dictionary to store data using 2-element tuples (i,j) as keys (i is the row and j the column index). The common matrix operations such as 'dot' for the inner product, multiplication/division by a scalar, indexing/slicing, etc. are overloaded for convenience. When used in conjunction with the 'vector' class, 'dot' products also apply between matrics and vectors. Two methods, 'CGsolve' and 'biCGsolve', are provided to solve linear systems. Tested using Python 2.2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | #!/usr/bin/env python
import vector
import math, types, operator
"""
A sparse matrix class based on a dictionary, supporting matrix (dot)
product and a conjugate gradient solver.
In this version, the sparse class inherits from the dictionary; this
requires Python 2.2 or later.
"""
class sparse(dict):
"""
A complex sparse matrix
A. Pletzer 5 Jan 00/12 April 2002
Dictionary storage format { (i,j): value, ... }
where (i,j) are the matrix indices
"""
# no c'tor
def size(self):
" returns # of rows and columns "
nrow = 0
ncol = 0
for key in self.keys():
nrow = max([nrow, key[0]+1])
ncol = max([ncol, key[1]+1])
return (nrow, ncol)
def __add__(self, other):
res = sparse(self.copy())
for ij in other:
res[ij] = self.get(ij,0.) + other[ij]
return res
def __neg__(self):
return sparse(zip(self.keys(), map(operator.neg, self.values())))
def __sub__(self, other):
res = sparse(self.copy())
for ij in other:
res[ij] = self.get(ij,0.) - other[ij]
return res
def __mul__(self, other):
" element by element multiplication: other can be scalar or sparse "
try:
# other is sparse
nval = len(other)
res = sparse()
if nval < len(self):
for ij in other:
res[ij] = self.get(ij,0.)*other[ij]
else:
for ij in self:
res[ij] = self[ij]*other.get(ij,0j)
return res
except:
# other is scalar
return sparse(zip(self.keys(), map(lambda x: x*other, self.values())))
def __rmul__(self, other): return self.__mul__(other)
def __div__(self, other):
" element by element division self/other: other is scalar"
return sparse(zip(self.keys(), map(lambda x: x/other, self.values())))
def __rdiv__(self, other):
" element by element division other/self: other is scalar"
return sparse(zip(self.keys(), map(lambda x: other/x, self.values())))
def abs(self):
return sparse(zip(self.keys(), map(operator.abs, self.values())))
def out(self):
print '# (i, j) -- value'
for k in self.keys():
print k, self[k]
def plot(self, width_in=400, height_in=400):
import colormap
import Tkinter
cmax = max(self.values())
cmin = min(self.values())
offset = 0.05*min(width_in, height_in)
xmin, ymin, xmax, ymax = 0,0,self.size()[0], self.size()[1]
scale = min(0.9*width_in, 0.9*height_in)/max(xmax-xmin, ymax-ymin)
root = Tkinter.Tk()
frame = Tkinter.Frame(root)
frame.pack()
text = Tkinter.Label(width=20, height=10, text='matrix sparsity')
text.pack()
canvas = Tkinter.Canvas(bg="black", width=width_in, height=height_in)
canvas.pack()
button = Tkinter.Button(frame, text="OK?", fg="red", command=frame.quit)
button.pack()
for index in self.keys():
ix, iy = index[0], ymax-index[1]-1
ya, xa = offset+scale*(ix ), height_in -offset-scale*(iy )
yb, xb = offset+scale*(ix+1), height_in -offset-scale*(iy )
yc, xc = offset+scale*(ix+1), height_in -offset-scale*(iy+1)
yd, xd = offset+scale*(ix ), height_in -offset-scale*(iy+1)
color = colormap.strRgb(self[index], cmin, cmax)
canvas.create_polygon(xa, ya, xb, yb, xc, yc, xd, yd, fill=color)
root.mainloop()
def CGsolve(self, x0, b, tol=1.0e-10, nmax = 1000, verbose=1):
"""
Solve self*x = b and return x using the conjugate gradient method
"""
if not vector.isVector(b):
raise TypeError, self.__class__,' in solve '
else:
if self.size()[0] != len(b) or self.size()[1] != len(b):
print '**Incompatible sizes in solve'
print '**size()=', self.size()[0], self.size()[1]
print '**len=', len(b)
else:
kvec = diag(self) # preconditionner
n = len(b)
x = x0 # initial guess
r = b - dot(self, x)
try:
w = r/kvec
except: print '***singular kvec'
p = vector.zeros(n);
beta = 0.0;
rho = vector.dot(r, w);
err = vector.norm(dot(self,x) - b);
k = 0
if verbose: print " conjugate gradient convergence (log error)"
while abs(err) > tol and k < nmax:
p = w + beta*p;
z = dot(self, p);
alpha = rho/vector.dot(p, z);
r = r - alpha*z;
w = r/kvec;
rhoold = rho;
rho = vector.dot(r, w);
x = x + alpha*p;
beta = rho/rhoold;
err = vector.norm(dot(self, x) - b);
if verbose: print k,' %5.1f ' % math.log10(err)
k = k+1
return x
def biCGsolve(self,x0, b, tol=1.0e-10, nmax = 1000):
"""
Solve self*x = b and return x using the bi-conjugate gradient method
"""
try:
if not vector.isVector(b):
raise TypeError, self.__class__,' in solve '
else:
if self.size()[0] != len(b) or self.size()[1] != len(b):
print '**Incompatible sizes in solve'
print '**size()=', self.size()[0], self.size()[1]
print '**len=', len(b)
else:
kvec = diag(self) # preconditionner
n = len(b)
x = x0 # initial guess
r = b - dot(self, x)
rbar = r
w = r/kvec;
wbar = rbar/kvec;
p = vector.zeros(n);
pbar = vector.zeros(n);
beta = 0.0;
rho = vector.dot(rbar, w);
err = vector.norm(dot(self,x) - b);
k = 0
print " bi-conjugate gradient convergence (log error)"
while abs(err) > tol and k < nmax:
p = w + beta*p;
pbar = wbar + beta*pbar;
z = dot(self, p);
alpha = rho/vector.dot(pbar, z);
r = r - alpha*z;
rbar = rbar - alpha* dot(pbar, self);
w = r/kvec;
wbar = rbar/kvec;
rhoold = rho;
rho = vector.dot(rbar, w);
x = x + alpha*p;
beta = rho/rhoold;
err = vector.norm(dot(self, x) - b);
print k,' %5.1f ' % math.log10(err)
k = k+1
return x
except: print 'ERROR ',self.__class__,'::biCGsolve'
def save(self, filename, OneBased=0):
"""
Save matrix in file <filaname> using format:
OneBased, nrow, ncol, nnonzeros
[ii, jj, data]
"""
m = n = 0
nnz = len(self)
for ij in self.keys():
m = max(ij[0], m)
n = max(ij[1], n)
f = open(filename,'w')
f.write('%d %d %d %d\n' % (OneBased, m+1,n+1,nnz))
for ij in self.keys():
i,j = ij
f.write('%d %d %20.17f \n'% \
(i+OneBased,j+OneBased,self[ij]))
f.close()
###############################################################################
def isSparse(x):
return hasattr(x,'__class__') and x.__class__ is sparse
def transp(a):
" transpose "
new = sparse({})
for ij in a:
new[(ij[1], ij[0])] = a[ij]
return new
def dotDot(y,a,x):
" double dot product y^+ *A*x "
if vector.isVector(y) and isSparse(a) and vector.isVector(x):
res = 0.
for ij in a.keys():
i,j = ij
res += y[i]*a[ij]*x[j]
return res
else:
print 'sparse::Error: dotDot takes vector, sparse , vector as args'
def dot(a, b):
" vector-matrix, matrix-vector or matrix-matrix product "
if isSparse(a) and vector.isVector(b):
new = vector.zeros(a.size()[0])
for ij in a.keys():
new[ij[0]] += a[ij]* b[ij[1]]
return new
elif vector.isVector(a) and isSparse(b):
new = vector.zeros(b.size()[1])
for ij in b.keys():
new[ij[1]] += a[ij[0]]* b[ij]
return new
elif isSparse(a) and isSparse(b):
if a.size()[1] != b.size()[0]:
print '**Warning shapes do not match in dot(sparse, sparse)'
new = sparse({})
n = min([a.size()[1], b.size()[0]])
for i in range(a.size()[0]):
for j in range(b.size()[1]):
sum = 0.
for k in range(n):
sum += a.get((i,k),0.)*b.get((k,j),0.)
if sum != 0.:
new[(i,j)] = sum
return new
else:
raise TypeError, 'in dot'
def diag(b):
# given a sparse matrix b return its diagonal
res = vector.zeros(b.size()[0])
for i in range(b.size()[0]):
res[i] = b.get((i,i), 0.)
return res
def identity(n):
if type(n) != types.IntType:
raise TypeError, ' in identity: # must be integer'
else:
new = sparse({})
for i in range(n):
new[(i,i)] = 1+0.
return new
###############################################################################
if __name__ == "__main__":
print 'a = sparse()'
a = sparse()
print 'a.__doc__=',a.__doc__
print 'a[(0,0)] = 1.0'
a[(0,0)] = 1.0
a.out()
print 'a[(2,3)] = 3.0'
a[(2,3)] = 3.0
a.out()
print 'len(a)=',len(a)
print 'a.size()=', a.size()
b = sparse({(0,0):2.0, (0,1):1.0, (1,0):1.0, (1,1):2.0, (1,2):1.0, (2,1):1.0, (2,2):2.0})
print 'a=', a
print 'b=', b
b.out()
print 'a+b'
c = a + b
c.out()
print '-a'
c = -a
c.out()
a.out()
print 'a-b'
c = a - b
c.out()
print 'a*1.2'
c = a*1.2
c.out()
print '1.2*a'
c = 1.2*a
c.out()
print 'a=', a
print 'dot(a, b)'
print 'a.size()[1]=',a.size()[1],' b.size()[0]=', b.size()[0]
c = dot(a, b)
c.out()
print 'dot(b, a)'
print 'b.size()[1]=',b.size()[1],' a.size()[0]=', a.size()[0]
c = dot(b, a)
c.out()
try:
print 'dot(b, vector.vector([1,2,3]))'
c = dot(b, vector.vector([1,2,3]))
c.out()
print 'dot(vector.vector([1,2,3]), b)'
c = dot(vector.vector([1,2,3]), b)
c.out()
print 'b.size()=', b.size()
except: pass
print 'a*b -> element by element product'
c = a*b
c.out()
print 'b*a -> element by element product'
c = b*a
c.out()
print 'a/1.2'
c = a/1.2
c.out()
print 'c = identity(4)'
c = identity(4)
c.out()
print 'c = transp(a)'
c = transp(a)
c.out()
b[(2,2)]=-10.0
b[(2,0)]=+10.0
try:
import vector
print 'Check conjugate gradient solver'
s = vector.vector([1, 0, 0])
print 's'
s.out()
x0 = s
print 'x = b.biCGsolve(x0, s, 1.0e-10, len(b)+1)'
x = b.biCGsolve(x0, s, 1.0e-10, len(b)+1)
x.out()
print 'check validity of CG'
c = dot(b, x) - s
c.out()
except: pass
print 'plot b matrix'
b.out()
b.plot()
print 'del b[(2,2)]'
del b[(2,2)]
print 'del a'
del a
#a.out()
|
I'm using this class in the context of a two-dimensional finite element code. When discretized, the partial differential equation reduces to a sparse matrix system. Because 'sparse' stores the data in a dictionary, the size of the problem need not be known before hand (the sparse matrix elements are filled up along the way). For such problems, the resulting matrix tends to be extremely sparse so that there is little advantage in storing data contiguously in memory; the dictionary random based storage turns out to be appropriate.
'sparse' in conjunction with 'vector' (also available as a Python recipe) supports many matrix-vector operations (+, dot product etc) as well as elementwise operations (sin, cos, ...). Thus, in order to use 'sparse' you will need to download 'vector'. 'sparse' comes in addition with a method for solving linear matrix systems based on the conjugate gradient method.
If you want a picture of your matrix using Tkinter, I suggest that you also download 'colormap'.
Just type in 'python sparse.py' to test some of sparse's functionality.
PS This version uses Python 2.2's new feature for deriving a class from a dictionary type. It also runs significantly faster than the previously posted version, thanks to the use of map/reduce and lambda.
--Alex.
Uhh Source Code? Where'd the code go? -- Brett Morgan
great work! This is great stuff!
Just a little note. Line that reads import sparse isn't needed.
Cool stuff. This is really cool stuff. I suggest that it
be made into a python module. Probably too big
for the Cookbook... ;-)
-Anand
Typo? I think there's a typo in __mul__; the res = csparse() should be res = sparse(), no?
You're right. Thanks for spotting this typo. --Alex.