This vector class stores elements in a list and hence allows the 'vector' to grow dynamically. Common mathematical functions (sin, cosh, etc) are supported elementwise and so are a number of 'external' operations (dot for the inner product between vectors, norm, sum etc.). This class does not rely on NumPy but can be used in conjunction with a 'sparse' matrix class to solve linear systems. Tested using Python 2.0 and Jython 2.0.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | #!/usr/bin/env python
#
# a python vector class
# A. Pletzer 5 Jan 00/11 April 2002
#
import math
"""
A list based vector class that supports elementwise mathematical operations
In this version, the vector call inherits from list; this
requires Python 2.2 or later.
"""
class vector(list):
"""
A list based vector class
"""
# no c'tor
def __getslice__(self, i, j):
try:
# use the list __getslice__ method and convert
# result to vector
return vector(super(vector, self).__getslice__(i,j))
except:
raise TypeError, 'vector::FAILURE in __getslice__'
def __add__(self, other):
return vector(map(lambda x,y: x+y, self, other))
def __neg__(self):
return vector(map(lambda x: -x, self))
def __sub__(self, other):
return vector(map(lambda x,y: x-y, self, other))
def __mul__(self, other):
"""
Element by element multiplication
"""
try:
return vector(map(lambda x,y: x*y, self,other))
except:
# other is a const
return vector(map(lambda x: x*other, self))
def __rmul__(self, other):
return (self*other)
def __div__(self, other):
"""
Element by element division.
"""
try:
return vector(map(lambda x,y: x/y, self, other))
except:
return vector(map(lambda x: x/other, self))
def __rdiv__(self, other):
"""
The same as __div__
"""
try:
return vector(map(lambda x,y: x/y, other, self))
except:
# other is a const
return vector(map(lambda x: other/x, self))
def size(self): return len(self)
def conjugate(self):
return vector(map(lambda x: x.conjugate(), self))
def ReIm(self):
"""
Return the real and imaginary parts
"""
return [
vector(map(lambda x: x.real, self)),
vector(map(lambda x: x.imag, self)),
]
def AbsArg(self):
"""
Return modulus and phase parts
"""
return [
vector(map(lambda x: abs(x), self)),
vector(map(lambda x: math.atan2(x.imag,x.real), self)),
]
def out(self):
"""
Prints out the vector.
"""
print self
###############################################################################
def isVector(x):
"""
Determines if the argument is a vector class object.
"""
return hasattr(x,'__class__') and x.__class__ is vector
def zeros(n):
"""
Returns a zero vector of length n.
"""
return vector(map(lambda x: 0., range(n)))
def ones(n):
"""
Returns a vector of length n with all ones.
"""
return vector(map(lambda x: 1., range(n)))
def random(n, lmin=0.0, lmax=1.0):
"""
Returns a random vector of length n.
"""
import whrandom
new = vector([])
gen = whrandom.whrandom()
dl = lmax-lmin
return vector(map(lambda x: dl*gen.random(),
range(n)))
def dot(a, b):
"""
dot product of two vectors.
"""
try:
return reduce(lambda x, y: x+y, a*b, 0.)
except:
raise TypeError, 'vector::FAILURE in dot'
def norm(a):
"""
Computes the norm of vector a.
"""
try:
return math.sqrt(abs(dot(a,a)))
except:
raise TypeError, 'vector::FAILURE in norm'
def sum(a):
"""
Returns the sum of the elements of a.
"""
try:
return reduce(lambda x, y: x+y, a, 0)
except:
raise TypeError, 'vector::FAILURE in sum'
# elementwise operations
def log10(a):
"""
log10 of each element of a.
"""
try:
return vector(map(math.log10, a))
except:
raise TypeError, 'vector::FAILURE in log10'
def log(a):
"""
log of each element of a.
"""
try:
return vector(map(math.log, a))
except:
raise TypeError, 'vector::FAILURE in log'
def exp(a):
"""
Elementwise exponential.
"""
try:
return vector(map(math.exp, a))
except:
raise TypeError, 'vector::FAILURE in exp'
def sin(a):
"""
Elementwise sine.
"""
try:
return vector(map(math.sin, a))
except:
raise TypeError, 'vector::FAILURE in sin'
def tan(a):
"""
Elementwise tangent.
"""
try:
return vector(map(math.tan, a))
except:
raise TypeError, 'vector::FAILURE in tan'
def cos(a):
"""
Elementwise cosine.
"""
try:
return vector(map(math.cos, a))
except:
raise TypeError, 'vector::FAILURE in cos'
def asin(a):
"""
Elementwise inverse sine.
"""
try:
return vector(map(math.asin, a))
except:
raise TypeError, 'vector::FAILURE in asin'
def atan(a):
"""
Elementwise inverse tangent.
"""
try:
return vector(map(math.atan, a))
except:
raise TypeError, 'vector::FAILURE in atan'
def acos(a):
"""
Elementwise inverse cosine.
"""
try:
return vector(map(math.acos, a))
except:
raise TypeError, 'vector::FAILURE in acos'
def sqrt(a):
"""
Elementwise sqrt.
"""
try:
return vector(map(math.sqrt, a))
except:
raise TypeError, 'vector::FAILURE in sqrt'
def sinh(a):
"""
Elementwise hyperbolic sine.
"""
try:
return vector(map(math.sinh, a))
except:
raise TypeError, 'vector::FAILURE in sinh'
def tanh(a):
"""
Elementwise hyperbolic tangent.
"""
try:
return vector(map(math.tanh, a))
except:
raise TypeError, 'vector::FAILURE in tanh'
def cosh(a):
"""
Elementwise hyperbolic cosine.
"""
try:
return vector(map(math.cosh, a))
except:
raise TypeError, 'vector::FAILURE in cosh'
def pow(a,b):
"""
Takes the elements of a and raises them to the b-th power
"""
try:
return vector(map(lambda x: x**b, a))
except:
try:
return vector(map(lambda x,y: x**y, a, b))
except:
raise TypeError, 'vector::FAILURE in pow'
def atan2(a,b):
"""
Arc tangent
"""
try:
return vector(map(math.atan2, a, b))
except:
raise TypeError, 'vector::FAILURE in atan2'
###############################################################################
if __name__ == "__main__":
print 'a = zeros(4)'
a = zeros(4)
print 'a.__doc__=',a.__doc__
print 'a[0] = 1.0'
a[0] = 1.0
print 'a[3] = 3.0'
a[3] = 3.0
print 'a[0]=', a[0]
print 'a[1]=', a[1]
print 'len(a)=',len(a)
print 'a.size()=', a.size()
b = vector([1, 2, 3, 4])
print 'a=', a
print 'b=', b
print 'a+b'
c = a + b
c.out()
print '-a'
c = -a
c.out()
a.out()
print 'a-b'
c = a - b
c.out()
print 'a*1.2'
c = a*1.2
c.out()
print '1.2*a'
c = 1.2*a
c.out()
print 'a=', a
print 'dot(a,b) = ', dot(a,b)
print 'dot(b,a) = ', dot(b,a)
print 'a*b'
c = a*b
c.out()
print 'a/1.2'
c = a/1.2
c.out()
print 'a[0:2]'
c = a[0:2]
c.out()
print 'a[2:5] = [9.0, 4.0, 5.0]'
a[2:5] = [9.0, 4.0, 5.0]
a.out()
print 'sqrt(a)=',sqrt(a)
print 'pow(a, 2*ones(len(a)))=',pow(a, 2*ones(len(a)))
print 'pow(a, 2)=',pow(a, 2*ones(len(a)))
print 'ones(10)'
c = ones(10)
c.out()
print 'zeros(10)'
c = zeros(10)
c.out()
print 'del a'
del a
try:
a = random(11, 0., 2.)
a.out()
except: pass
|
I'm using this class extensively in the context of a finite element code to store data on a mesh. 'vector' is really useful in conjunction with a corresponding 'sparse' matrix class to solve linear systems arising after discretizing a partial differiental equation. Nice features of 'vector' are: (1) the vector can grow dynamically and (2) it does not rely on NumPy so that this class runs equally well (except for the random number generator whrandom) with Jython.
--Alex.
This will be a great help to me. Nice job Alex. This is something I definitely could use. Bill Tate
replace lambda by module operator. The page: PythonSpeed http://wiki.python.org/moin/PythonSpeed recommands using module operator instead of lambdas. (http://docs.python.org/lib/module-operator.html)
For example: