# Functions can be memoised "by hand" using a dictionary to hold
# the return values when they are calculated:
# Here is a simple case, using the recursive fibonnaci function
# f(n) = f(n-1) + f(n-2)
fib_memo = {}
def fib(n):
if n < 2: return 1
if not fib_memo.has_key(n):
fib_memo[n] = fib(n-1) + fib(n-2)
return fib_memo[n]
# To encapsulate this in a class, use the Memoize class:
class Memoize:
"""Memoize(fn) - an instance which acts like fn but memoizes its arguments
Will only work on functions with non-mutable arguments
"""
def __init__(self, fn):
self.fn = fn
self.memo = {}
def __call__(self, *args):
if not self.memo.has_key(args):
self.memo[args] = self.fn(*args)
return self.memo[args]
# And here is how to use this class to memoize fib(). Note that the definition
# for fib() is now the "obvious" one, without the cacheing code obscuring
# the algorithm.
def fib(n):
if n < 2: return 1
return fib(n-1) + fib(n-2)
fib = Memoize(fib)
# For functions taking mutable arguments, use the cPickle module, as
# in class MemoizeMutable:
class MemoizeMutable:
"""Memoize(fn) - an instance which acts like fn but memoizes its arguments
Will work on functions with mutable arguments (slower than Memoize)
"""
def __init__(self, fn):
self.fn = fn
self.memo = {}
def __call__(self, *args):
import cPickle
str = cPickle.dumps(args)
if not self.memo.has_key(str):
self.memo[str] = self.fn(*args)
return self.memo[str]