# Functions can be memoised "by hand" using a dictionary to hold # the return values when they are calculated: # Here is a simple case, using the recursive fibonnaci function # f(n) = f(n-1) + f(n-2) fib_memo = {} def fib(n): if n < 2: return 1 if not fib_memo.has_key(n): fib_memo[n] = fib(n-1) + fib(n-2) return fib_memo[n] # To encapsulate this in a class, use the Memoize class: class Memoize: """Memoize(fn) - an instance which acts like fn but memoizes its arguments Will only work on functions with non-mutable arguments """ def __init__(self, fn): self.fn = fn self.memo = {} def __call__(self, *args): if not self.memo.has_key(args): self.memo[args] = self.fn(*args) return self.memo[args] # And here is how to use this class to memoize fib(). Note that the definition # for fib() is now the "obvious" one, without the cacheing code obscuring # the algorithm. def fib(n): if n < 2: return 1 return fib(n-1) + fib(n-2) fib = Memoize(fib) # For functions taking mutable arguments, use the cPickle module, as # in class MemoizeMutable: class MemoizeMutable: """Memoize(fn) - an instance which acts like fn but memoizes its arguments Will work on functions with mutable arguments (slower than Memoize) """ def __init__(self, fn): self.fn = fn self.memo = {} def __call__(self, *args): import cPickle str = cPickle.dumps(args) if not self.memo.has_key(str): self.memo[str] = self.fn(*args) return self.memo[str]