This program provides sample usage for the opt.py and physics.py modules shown in previous recipes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | # IMPORT
import Tkinter
import tkMessageBox
import tkSimpleDialog
import random
import time
# CUSTOM
import physics
from opt import *
################################################################################
# PROGRAM INITIALIZATION FUNCTIONS
def main():
"Start the program."
global run
run = False
initialize()
show_start()
run = True
Tkinter.mainloop()
def initialize():
"Build the program's drawing surface."
global root, screen
root = Tkinter.Tk()
root.title(STR.GM_NAME)
root.resizable(False, False)
x = (root.winfo_screenwidth() - MNU.SCR_W) / 2
y = (root.winfo_screenheight() - MNU.SCR_H) / 2
root.geometry('%dx%d+%d+%d' % (MNU.SCR_W, MNU.SCR_H, x, y))
screen = Tkinter.Canvas(root, highlightthickness=0)
screen.pack()
def show_start():
"Display the start menu to the user."
x, y = map(int, root.geometry().split('+')[1:])
if run:
width, height = map(int, root.geometry().split('+')[0].split('x'))
x += (width - MNU.SCR_W) / 2
y += (height - MNU.SCR_H) / 2
root.geometry('%dx%d+%d+%d' % (MNU.SCR_W, MNU.SCR_H, x, y))
screen.config(width=MNU.SCR_W, height=MNU.SCR_H, background=CLR.MENU_BG)
screen.delete(Tkinter.ALL)
screen.create_text(MNU.SCR_W / 2, MNU.SCR_H / 2, text=format_HST(), font=FNT.HS_TEXT, fill=CLR.HS_TEXT)
button = screen.create_text(MNU.SCR_W / 2, MNU.START, text=STR.PLAY_BT, font=FNT.BT_NORM, fill=CLR.BT_NORM)
screen.tag_bind(button, '<Enter>', bt_high)
screen.tag_bind(button, '<Leave>', bt_norm)
screen.tag_bind(button, '<1>', start_session)
################################################################################
# HST PREPARATION FUNCTIONS
def format_HST():
"Properly format HST into a string."
verify_HST()
lines = []
for key in sorted(HST, reverse=True):
score = ' ' + str(key)
for name in HST[key]:
lines.append((name[:MNU.N_LEN] + ' ').ljust(MNU.HST_W - len(score), STR.T_SPACE) + score)
return '\n'.join(lines)
def verify_HST():
"Check the HST data structure."
try:
names = 0
for key in HST:
assert isinstance(key, int)
assert isinstance(HST[key], list)
for name in HST[key]:
assert isinstance(name, str)
names += 1
assert names <= MNU.HST_H
assert names == MNU.HST_H
except:
root.withdraw()
tkMessageBox.showerror('Error', 'The high score table is corrupt.')
raise SystemExit, 1
################################################################################
# MENU SUPPORT FUNCTIONS
def bt_high(event):
"Highlight a button."
screen.itemconfig(Tkinter.CURRENT, fill=CLR.BT_HIGH, font=FNT.BT_HIGH)
def bt_norm(event):
"Normalize a button."
screen.itemconfig(Tkinter.CURRENT, fill=CLR.BT_NORM, font=FNT.BT_NORM)
def start_session(event):
"Setup the program for a session."
x, y = map(int, root.geometry().split('+')[1:])
width, height = map(int, root.geometry().split('+')[0].split('x'))
x += (width - GAM.SCR_W) / 2
y += (height - GAM.SCR_H) / 2
root.geometry('%dx%d+%d+%d' % (GAM.SCR_W, GAM.SCR_H, x, y))
screen.config(width=GAM.SCR_W, height=GAM.SCR_H, background=CLR.GAME_BG)
screen.delete(Tkinter.ALL)
build_balls()
build_world()
build_loops()
################################################################################
# SESSION SETUP FUNCTIONS
def build_balls():
"Build some non-overlapping balls."
global balls
balls = []
sides = set()
for ball in xrange(GAM.B_ALL):
x = -GAM.B_OFF if random.randint(0, 1) else GAM.B_OFF + GAM.SCR_W
y = random.randint(GAM.B_RAD, GAM.SCR_H - GAM.F_OFF - GAM.B_RAD) / GAM.B_RAD * GAM.B_RAD
while (x, y) in sides:
x = -GAM.B_OFF if random.randint(0, 1) else GAM.B_OFF + GAM.SCR_W
y = random.randint(GAM.B_RAD, GAM.SCR_H - GAM.F_OFF - GAM.B_RAD) / GAM.B_RAD * GAM.B_RAD
sides.add((x, y))
balls.append(physics.Ball(x, y, GAM.B_RAD))
balls[-1].type = 0
balls = tuple(balls)
def build_world():
"Build the program's environment."
global clock_xy
x = GAM.W_OFF - 1
y = GAM.SCR_H - GAM.F_OFF + 2
screen.create_rectangle(-1, -1, x, y, fill=CLR.FORCE)
screen.create_rectangle(GAM.SCR_W - x, -1, GAM.SCR_W, y, fill=CLR.FORCE)
screen.create_line(0, y, GAM.SCR_W, y, fill=CLR.FLOOR, width=3)
clock_xy = x / 2, (y + GAM.SCR_H) / 2
screen.create_text(clock_xy, text=f_time(TMR.LIMIT), tag='timer')
screen.bind('<1>', click)
def build_loops():
"Build the program's three loops."
global world_h, frame_h, clock_h, start, world, frame, clock
world_h = screen.after(1000 / TMR.P_FPS, update_world)
frame_h = screen.after(1000 / TMR.S_FPS, update_frame)
clock_h = screen.after(1000, update_clock)
start = time.clock()
world = 1.0
frame = 1.0
clock = 0
################################################################################
# PROGRAM LOOP FUNCTIONS
def update_world():
"Crash, move, and mutate the balls."
global world_h, world
for index, ball_1 in enumerate(balls[:-1]):
for ball_2 in balls[index+1:]:
ball_1.crash(ball_2)
for ball in balls:
ball.err *= PHY.B_BONUS
ball.correct()
governor(ball)
ball.move(TMR.P_FPS)
for mutate in wall, floor, gravity, friction:
mutate(ball)
world += 1
world_h = screen.after(int((start + world / TMR.P_FPS - time.clock()) * 1000), update_world)
def update_frame():
"Draw the contents of the screen."
global frame_h, frame
screen.delete('ball')
for num, ball in enumerate(balls):
x1 = ball.pos.x - ball.rad
y1 = ball.pos.y - ball.rad
x2 = ball.pos.x + ball.rad
y2 = ball.pos.y + ball.rad
screen.create_oval(x1, y1, x2, y2, fill=CLR.CYCLE[ball.type], tag=(num, 'ball'))
frame += 1
frame_h = screen.after(int((start + frame / TMR.S_FPS - time.clock()) * 1000), update_frame)
def update_clock():
"Update the clock on the screen."
global clock_h, clock
screen.delete('timer')
clock += 1
screen.create_text(clock_xy, text=f_time(TMR.LIMIT - clock), tag='timer')
if TMR.LIMIT - clock:
clock_h = screen.after(int((start + clock + 1 - time.clock()) * 1000), update_clock)
else:
lose(True)
################################################################################
# VELOCITY MUTATOR FUNCTIONS
def governor(ball):
"Simulate speed governor."
if abs(ball.vel) > PHY.S_LIMIT:
ball.vel = ball.vel.unit() * PHY.S_LIMIT
def wall(ball):
"Simulate a force-field wall."
space = GAM.W_OFF + ball.rad
force = float(PHY.W_FORCE) / TMR.P_FPS
if ball.pos.x <= space:
ball.vel.x += force
elif ball.pos.x >= GAM.SCR_W - space:
ball.vel.x -= force
def floor(ball):
"Simulate a floor."
floor_height = GAM.SCR_H - GAM.F_OFF - ball.rad
if ball.pos.y >= floor_height:
ball.pos.y = floor_height
ball.vel.y *= -1
def gravity(ball):
"Simulate gravity."
ball.vel.y += float(PHY.G_FORCE) / TMR.P_FPS
def friction(ball):
"Simulate friction."
ball.vel *= (PHY.F_FORCE / 1000.0) ** (1.0 / TMR.P_FPS)
################################################################################
# SESSION INTERACTION FUNCTIONS
def click(event):
"Change a ball's color."
global blink_h, blink
try:
ball = balls[int(screen.gettags(screen.find_withtag(Tkinter.CURRENT))[0])]
ball.type = (ball.type + 1) % len(CLR.CYCLE)
if sum(map(lambda ball: ball.type, balls)) == (len(CLR.CYCLE) - 1) * len(balls):
screen.after_cancel(world_h)
screen.after_cancel(frame_h)
screen.after_cancel(clock_h)
screen.delete('ball')
blink = screen.create_text(GAM.SCR_W / 2, GAM.SCR_H / 2, text=STR.MS_TEXT, font=FNT.MS_TEXT, fill=CLR.MS_TEXT)
blink_h = screen.after(TMR.MS_FF, toggle_text)
screen.after(TMR.DELAY, win if TMR.LIMIT - clock >= min(HST) else lose)
except:
pass
def toggle_text():
"Blink the winning text."
global blink_h, blink
blink_h = screen.after(TMR.MS_FF, toggle_text)
blink = screen.delete(blink) if blink else screen.create_text(GAM.SCR_W / 2, GAM.SCR_H / 2, text=STR.MS_TEXT, font=FNT.MS_TEXT, fill=CLR.MS_TEXT)
def win():
"Add name to HST and return to menu."
name = tkSimpleDialog.askstring(STR.VICT_TI, '\n'.join(STR.VICT_MS)) or STR.DEFAULT
score = TMR.LIMIT - clock
if score in HST:
HST[score].insert(0, name)
else:
HST[score] = [name]
loser = min(HST)
if len(HST[loser]) > 1:
del HST[loser][-1]
else:
del HST[loser]
screen.after_cancel(blink_h)
show_start()
################################################################################
# SESSION TIMER FUCTIONS
def f_time(seconds):
"Return time with correct format."
return '%02d:%02d' % (seconds / 60, seconds % 60)
def lose(real=False):
"End the session and get input."
restart = tkMessageBox.askquestion(STR.LOSE_TI, STR.LOSE_MS) == 'yes'
if real:
screen.after_cancel(world_h)
screen.after_cancel(frame_h)
else:
screen.after_cancel(blink_h)
if restart:
start_session(None)
else:
show_start()
################################################################################
if __name__ == '__main__':
main()
|
The code above can be used as a hand-eye coordination tester based on the score given at the end of the session.
Tags: programs