During a recent application server design, I came across the need for a thread locking class which supports read and write locks (in the filesystem lock kind of way).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | # -*- coding: iso-8859-15 -*-
"""locks.py - Read-Write lock thread lock implementation
See the class documentation for more info.
Copyright (C) 2007, Heiko Wundram.
Released under the BSD-license.
"""
# Imports
# -------
from threading import Condition, Lock, currentThread
from time import time
# Read write lock
# ---------------
class ReadWriteLock(object):
"""Read-Write lock class. A read-write lock differs from a standard
threading.RLock() by allowing multiple threads to simultaneously hold a
read lock, while allowing only a single thread to hold a write lock at the
same point of time.
When a read lock is requested while a write lock is held, the reader
is blocked; when a write lock is requested while another write lock is
held or there are read locks, the writer is blocked.
Writers are always preferred by this implementation: if there are blocked
threads waiting for a write lock, current readers may request more read
locks (which they eventually should free, as they starve the waiting
writers otherwise), but a new thread requesting a read lock will not
be granted one, and block. This might mean starvation for readers if
two writer threads interweave their calls to acquireWrite() without
leaving a window only for readers.
In case a current reader requests a write lock, this can and will be
satisfied without giving up the read locks first, but, only one thread
may perform this kind of lock upgrade, as a deadlock would otherwise
occur. After the write lock has been granted, the thread will hold a
full write lock, and not be downgraded after the upgrading call to
acquireWrite() has been match by a corresponding release().
"""
def __init__(self):
"""Initialize this read-write lock."""
# Condition variable, used to signal waiters of a change in object
# state.
self.__condition = Condition(Lock())
# Initialize with no writers.
self.__writer = None
self.__upgradewritercount = 0
self.__pendingwriters = []
# Initialize with no readers.
self.__readers = {}
def acquireRead(self,timeout=None):
"""Acquire a read lock for the current thread, waiting at most
timeout seconds or doing a non-blocking check in case timeout is <= 0.
In case timeout is None, the call to acquireRead blocks until the
lock request can be serviced.
In case the timeout expires before the lock could be serviced, a
RuntimeError is thrown."""
if timeout is not None:
endtime = time() + timeout
me = currentThread()
self.__condition.acquire()
try:
if self.__writer is me:
# If we are the writer, grant a new read lock, always.
self.__writercount += 1
return
while True:
if self.__writer is None:
# Only test anything if there is no current writer.
if self.__upgradewritercount or self.__pendingwriters:
if me in self.__readers:
# Only grant a read lock if we already have one
# in case writers are waiting for their turn.
# This means that writers can't easily get starved
# (but see below, readers can).
self.__readers[me] += 1
return
# No, we aren't a reader (yet), wait for our turn.
else:
# Grant a new read lock, always, in case there are
# no pending writers (and no writer).
self.__readers[me] = self.__readers.get(me,0) + 1
return
if timeout is not None:
remaining = endtime - time()
if remaining <= 0:
# Timeout has expired, signal caller of this.
raise RuntimeError("Acquiring read lock timed out")
self.__condition.wait(remaining)
else:
self.__condition.wait()
finally:
self.__condition.release()
def acquireWrite(self,timeout=None):
"""Acquire a write lock for the current thread, waiting at most
timeout seconds or doing a non-blocking check in case timeout is <= 0.
In case the write lock cannot be serviced due to the deadlock
condition mentioned above, a ValueError is raised.
In case timeout is None, the call to acquireWrite blocks until the
lock request can be serviced.
In case the timeout expires before the lock could be serviced, a
RuntimeError is thrown."""
if timeout is not None:
endtime = time() + timeout
me, upgradewriter = currentThread(), False
self.__condition.acquire()
try:
if self.__writer is me:
# If we are the writer, grant a new write lock, always.
self.__writercount += 1
return
elif me in self.__readers:
# If we are a reader, no need to add us to pendingwriters,
# we get the upgradewriter slot.
if self.__upgradewritercount:
# If we are a reader and want to upgrade, and someone
# else also wants to upgrade, there is no way we can do
# this except if one of us releases all his read locks.
# Signal this to user.
raise ValueError(
"Inevitable dead lock, denying write lock"
)
upgradewriter = True
self.__upgradewritercount = self.__readers.pop(me)
else:
# We aren't a reader, so add us to the pending writers queue
# for synchronization with the readers.
self.__pendingwriters.append(me)
while True:
if not self.__readers and self.__writer is None:
# Only test anything if there are no readers and writers.
if self.__upgradewritercount:
if upgradewriter:
# There is a writer to upgrade, and it's us. Take
# the write lock.
self.__writer = me
self.__writercount = self.__upgradewritercount + 1
self.__upgradewritercount = 0
return
# There is a writer to upgrade, but it's not us.
# Always leave the upgrade writer the advance slot,
# because he presumes he'll get a write lock directly
# from a previously held read lock.
elif self.__pendingwriters[0] is me:
# If there are no readers and writers, it's always
# fine for us to take the writer slot, removing us
# from the pending writers queue.
# This might mean starvation for readers, though.
self.__writer = me
self.__writercount = 1
self.__pendingwriters = self.__pendingwriters[1:]
return
if timeout is not None:
remaining = endtime - time()
if remaining <= 0:
# Timeout has expired, signal caller of this.
if upgradewriter:
# Put us back on the reader queue. No need to
# signal anyone of this change, because no other
# writer could've taken our spot before we got
# here (because of remaining readers), as the test
# for proper conditions is at the start of the
# loop, not at the end.
self.__readers[me] = self.__upgradewritercount
self.__upgradewritercount = 0
else:
# We were a simple pending writer, just remove us
# from the FIFO list.
self.__pendingwriters.remove(me)
raise RuntimeError("Acquiring write lock timed out")
self.__condition.wait(remaining)
else:
self.__condition.wait()
finally:
self.__condition.release()
def release(self):
"""Release the currently held lock.
In case the current thread holds no lock, a ValueError is thrown."""
me = currentThread()
self.__condition.acquire()
try:
if self.__writer is me:
# We are the writer, take one nesting depth away.
self.__writercount -= 1
if not self.__writercount:
# No more write locks; take our writer position away and
# notify waiters of the new circumstances.
self.__writer = None
self.__condition.notifyAll()
elif me in self.__readers:
# We are a reader currently, take one nesting depth away.
self.__readers[me] -= 1
if not self.__readers[me]:
# No more read locks, take our reader position away.
del self.__readers[me]
if not self.__readers:
# No more readers, notify waiters of the new
# circumstances.
self.__condition.notifyAll()
else:
raise ValueError("Trying to release unheld lock")
finally:
self.__condition.release()
|
I needed the functionality that this class provides in a CherryPy-based webserver, which uses threading. Basically, I check for changed template files at a certain fixed interval in a daemon thread, having files be reloaded from disk in case the mtime doesn't match.
As template users (webserver threads) don't need mutual exclusion, but just the confidence that another thread isn't messing around with the template code environment they expect, they can share the state, just as the template checking thread doesn't need write access to the template code in case the mtime of the template file hasn't changed.
Basically what evolved was code of the following sorts:
tmpl_lock = ReadWriteLock()
Reader:
tmpl_lock.acquireRead() try:
finally: tmpl_lock.release()
Reloader:
tmpl_lock.acquireRead() try: : tmpl_lock.acquireWrite() try:
finally:
tmpl_lock.release()
finally: tmpl_lock.release()
The writer case can never enter the deadlock condition described in the module source, as there is only a single writer thread which does an upgrade.
The actual class is pretty close to what Tanenbaum describes as reader/writer locking in "Operating Systems - Design and Implementation" in the chapter on processes, only that it's implemented in Python for Python thread synchronization.
The usual caveats apply, such as reader starvation if several writers overlap, and spurious ValueErrors (because of inevitable deadlock) when you have several different threads do "state upgrades". The first kind of problem, total reader starvation, could be resolved, but for my use case, that's not a priority.
The class hasn't been heavily tested, but works for me (TM).
Wonderful. This is great code. I had been using a class I based on http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66426, but this nicely handles a bunch of limitations on re-entrancy I was coming up against.
Two suggestions. First, make the signatures of the acquire methods take two arguments:
to stay closer to the calling conventions of the threading model. Then you can just replace your initial test on timeout with:
and at the end of the acquires methods, replace "if timeout is not None" with "if endtime is not None".
Second, add in the following helper methods:
and similarly for writelock/acquireWrite.
Then you can write code like this:
Also, shouldn't this be in the Threads category?
I'm looking at using this recipe in a project I'm working on. I'd like to modify it to not always raise a ValueError exception in the multiple state upgrade deadlock scenario. If the acquireWrite call has a timeout set, I think it should instead raise a RuntimeError to indicate a timeout. While the timeout may not have actually expired, in theory it would deadlock until it did expire, then it would give up and the deadlock would be broken. So rather than causing a deadlock exception, I'd like to cause a more manageable timeout exception if the caller indicated (by setting a timeout) that they are prepared to gracefully handle that scenario.
Would it be as simple as: