Saw recipe 502194 and wondered if I could do similar. I initially came up with function comb that enumerates all combinations. I wanted a generator however and so abandoned that approach for comb2 which is a little more complex.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | def comb(*sequences):
    '''
    combinations of multiple sequences so you don't have
    to write nested for loops
    
    >>> from pprint import pprint as pp
    >>> pp(comb(['Guido','Larry'], ['knows','loves'], ['Phyton','Purl']))
    [['Guido', 'knows', 'Phyton'],
     ['Guido', 'knows', 'Purl'],
     ['Guido', 'loves', 'Phyton'],
     ['Guido', 'loves', 'Purl'],
     ['Larry', 'knows', 'Phyton'],
     ['Larry', 'knows', 'Purl'],
     ['Larry', 'loves', 'Phyton'],
     ['Larry', 'loves', 'Purl']]
    >>> 
    '''
    combinations = [[seq] for seq in sequences[0]]
    for seq in sequences[1:]:
        combinations = [comb+[item]
                        for comb in combinations
                        for item in seq ]
    return combinations
def comb2(*sequences):
    '''
    Generator of combinations of multiple sequences so you don't have
    to write nested for loops
    Note: rightmost sequence changes the quickest as if it were the inner loop.    
    
    >>> for x in comb2(['Guido','Larry'], ['knows','loves','hates'], ['Phyton','Purl','Wuby','Auk']):
    ... 	print x
    ... 	
    ['Guido', 'knows', 'Phyton']
    ['Guido', 'knows', 'Purl']
    ['Guido', 'knows', 'Wuby']
    ['Guido', 'knows', 'Auk']
    ['Guido', 'loves', 'Phyton']
    ['Guido', 'loves', 'Purl']
    ['Guido', 'loves', 'Wuby']
    ['Guido', 'loves', 'Auk']
    ['Guido', 'hates', 'Phyton']
    ['Guido', 'hates', 'Purl']
    ['Guido', 'hates', 'Wuby']
    ['Guido', 'hates', 'Auk']
    ['Larry', 'knows', 'Phyton']
    ['Larry', 'knows', 'Purl']
    ['Larry', 'knows', 'Wuby']
    ['Larry', 'knows', 'Auk']
    ['Larry', 'loves', 'Phyton']
    ['Larry', 'loves', 'Purl']
    ['Larry', 'loves', 'Wuby']
    ['Larry', 'loves', 'Auk']
    ['Larry', 'hates', 'Phyton']
    ['Larry', 'hates', 'Purl']
    ['Larry', 'hates', 'Wuby']
    ['Larry', 'hates', 'Auk']
    >>>
    The algorithm relies on noting the following and generalising:
    If you had three sequences of length 2, 3, and 4 left-to-right,
    Then the indices of the *elements* for all combinations can be
    generated with:
        for x in range(2*3*4): 
            print ( (x/(3*4*1))%2, (x/(4*1))%3, (x/(1))%4 )
    
    '''
    import operator
    
    lengths = [len(seq) for seq in sequences]
    range_len_seq = range(len(sequences))
    max_count = reduce(operator.mul, lengths)
    _tmp = lengths + [1]        # append multiplicative identity
    dividers = [reduce(operator.mul, _tmp[-x-1:]) for x in range_len_seq][::-1]
    modulos = lengths
    for n in range(max_count):
        yield [sequences[r][(n/dividers[r])%modulos[r]] for r in range_len_seq]
 | 
Deeply nested code is usually code in need of refactoring, but if you still think you need it then comp2 will save you some levels of indentation.
- Donald 'Paddy' McCarthy.
    Tags: algorithms
  
  
      
 Download
Download Copy to clipboard
Copy to clipboard