Saw recipe 502194 and wondered if I could do similar. I initially came up with function comb that enumerates all combinations. I wanted a generator however and so abandoned that approach for comb2 which is a little more complex.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | def comb(*sequences):
'''
combinations of multiple sequences so you don't have
to write nested for loops
>>> from pprint import pprint as pp
>>> pp(comb(['Guido','Larry'], ['knows','loves'], ['Phyton','Purl']))
[['Guido', 'knows', 'Phyton'],
['Guido', 'knows', 'Purl'],
['Guido', 'loves', 'Phyton'],
['Guido', 'loves', 'Purl'],
['Larry', 'knows', 'Phyton'],
['Larry', 'knows', 'Purl'],
['Larry', 'loves', 'Phyton'],
['Larry', 'loves', 'Purl']]
>>>
'''
combinations = [[seq] for seq in sequences[0]]
for seq in sequences[1:]:
combinations = [comb+[item]
for comb in combinations
for item in seq ]
return combinations
def comb2(*sequences):
'''
Generator of combinations of multiple sequences so you don't have
to write nested for loops
Note: rightmost sequence changes the quickest as if it were the inner loop.
>>> for x in comb2(['Guido','Larry'], ['knows','loves','hates'], ['Phyton','Purl','Wuby','Auk']):
... print x
...
['Guido', 'knows', 'Phyton']
['Guido', 'knows', 'Purl']
['Guido', 'knows', 'Wuby']
['Guido', 'knows', 'Auk']
['Guido', 'loves', 'Phyton']
['Guido', 'loves', 'Purl']
['Guido', 'loves', 'Wuby']
['Guido', 'loves', 'Auk']
['Guido', 'hates', 'Phyton']
['Guido', 'hates', 'Purl']
['Guido', 'hates', 'Wuby']
['Guido', 'hates', 'Auk']
['Larry', 'knows', 'Phyton']
['Larry', 'knows', 'Purl']
['Larry', 'knows', 'Wuby']
['Larry', 'knows', 'Auk']
['Larry', 'loves', 'Phyton']
['Larry', 'loves', 'Purl']
['Larry', 'loves', 'Wuby']
['Larry', 'loves', 'Auk']
['Larry', 'hates', 'Phyton']
['Larry', 'hates', 'Purl']
['Larry', 'hates', 'Wuby']
['Larry', 'hates', 'Auk']
>>>
The algorithm relies on noting the following and generalising:
If you had three sequences of length 2, 3, and 4 left-to-right,
Then the indices of the *elements* for all combinations can be
generated with:
for x in range(2*3*4):
print ( (x/(3*4*1))%2, (x/(4*1))%3, (x/(1))%4 )
'''
import operator
lengths = [len(seq) for seq in sequences]
range_len_seq = range(len(sequences))
max_count = reduce(operator.mul, lengths)
_tmp = lengths + [1] # append multiplicative identity
dividers = [reduce(operator.mul, _tmp[-x-1:]) for x in range_len_seq][::-1]
modulos = lengths
for n in range(max_count):
yield [sequences[r][(n/dividers[r])%modulos[r]] for r in range_len_seq]
|
Deeply nested code is usually code in need of refactoring, but if you still think you need it then comp2 will save you some levels of indentation.
- Donald 'Paddy' McCarthy.
Tags: algorithms