Welcome, guest | Sign In | My Account | Store | Cart

This container stores its items both in a dict (for direct access) and in a bi-directionally linked list, which enables it to update itself in essentially O(1) time. No iteration over the entire list is ever needed, no separate thread is required for cleaning either. Should be useful e.g. for session storage in web servers.

Python, 268 lines
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
'''
self-cleaning time- and size-limited, dict-like container

items are kept in a dict but are also mutually linked to
each other in sequence of their last access time,
from self._oldest to self._newest

cleanup is performed upon each access, proceeding from self._oldest
up to the first one that is not expired yet, so that there is never a need
to iterate over all items; performance of access to single items
should therefore essentially be O(1).

In addition to the time-out, there also is a size limit, which
when exceeded will cause the oldest among the not yet expired items
to be kicked out as well.
'''

from UserDict import DictMixin
import sys
from time import time

class _FakeLock(object):
    '''
    a do-nothin, substituted for a real Lock if there is no threading. Really a micro-optimization.
    '''
    acquire = release = lambda x : None

_FakeLock = _FakeLock() # need only one instance


def RLock():
    '''
    make the container threadsafe if running in a threaded context
    '''
    if 'thread' in sys.modules:     # thread may be imported either directly or by module threading
        import threading
        return threading.RLock()
    else:
        return _FakeLock


class _Item(object):
    '''
    wrapper for items stored in LruDict, providing them with references to one another
    '''
    __slots__ = "key value nextItem previousItem atime".split()
    def __init__(self, key, value):
        self.key = key
        self.value = value
        self.nextItem = None
        self.previousItem = None
        self.atime = time()


class LruDict(DictMixin):
    '''
    store up to size items for up to timeout seconds
    We inherit from UserDict.DictMixin rather than from dict
    because DictMixin builds all its methods on a base set
    of user-supplied ones
    '''

    def __init__(self, timeout=600, size=1000, data=None):
        self._lock = RLock()
        self._timeout = timeout
        self._size = size

        # pointers to newest and oldest items
        self._newest = None
        self._oldest = None

        self._data = {}
        if data:
            self.update(data)


    def _setNewest(self, item):
        '''
        put a new or retrieved item at the top of the pile
        '''
        item.atime = time()

        if item is self._newest:                        # item is already on top
            return

        if item.nextItem or item.previousItem:          # this item is currently in the pile...
            self._pullout(item)                         # pull it out

        if self._newest:
            self._newest.nextItem = item                # point the previously newest item to this one...
            item.previousItem = self._newest            # and vice versa

        self._newest = item                             # reset the 'newest' pointer

        if not self._oldest:                            # this only applies if the pile was empty
            self._oldest = item



    def _pullout(self, item):
        '''
        pull an item out of the pile and hook up the neighbours to each other
        '''
        if item is self._oldest:
            if item is self._newest:                    # removing the only item
                self._newest = self._oldest = None
            else:                                       # removing the oldest item of 2 or more
                self._oldest = item.nextItem
                self._oldest.previousItem = None

        elif item is self._newest:                      # removing the newest item of 2 or more
            self._newest = item.previousItem
            self._newest.nextItem = None

        else:   # we are somewhere in between at least 2 others - hitch up the neighbours to each other
            prev = item.previousItem
            next = item.nextItem

            prev.nextItem = next
            next.previousItem = prev

        item.nextItem = item.previousItem = None


    def __setitem__(self, key, value):
        '''
        add a new item or update an old one
        '''
        try:
            self._lock.acquire()
            self.prune()    # here we make a choice - if we prune a the beginning, we may wind up with size+1
                            # items; if we prune at the end, we might keep an expired item. Not serious.

            item = self._data.get(key)
            if item:
                item.value = value
            else:
                item = self._data[key] = _Item(key, value)

            self._setNewest(item)

        finally:
            self._lock.release()


    def __getitem__(self, key):
        '''
        get an item and update its access time and pile position
        '''
        try:
            self._lock.acquire()
            self.prune()
            item = self._data[key]
            self._setNewest(item)
            return item.value

        finally:
            self._lock.release()


    def __delitem__(self, key):
        '''
        delete an item
        '''
        try:
            self._lock.acquire()
            item = self._data.pop(key)
            self._pullout(item)
            self.prune()
        finally:
            self._lock.release()


    def prune(self):
        '''
        called by __delitem__, __getitem__, __setitem__, and _contents
        drop the oldest members until we get back to recent time or
        to size limit
        '''
        if not len(self._data):
            return
        try:
            self._lock.acquire()
            outtime = time() - self._timeout

            while len(self._data) > self._size or self._oldest and self._oldest.atime < outtime:
                drop = self._data.pop(self._oldest.key)
                self._oldest = drop.nextItem
                if self._oldest:
                    self._oldest.previousItem = None

        finally:
            self._lock.release()


    def _contents(self, method, *args):
        '''
        common backend for methods:
        keys, values, items, __len__, __contains__
        '''
        try:
            self._lock.acquire()
            self.prune()

            data = getattr(self._data, method)(*args)
            return data

        finally:
            self._lock.release()


    def __contains__(self, key):
        return self._contents('__contains__', key)

    has_key = __contains__


    def __len__(self):
        return self._contents('__len__')


    def keys(self):
        return self._contents('keys')


    def values(self):
        data = self._contents('values')
        return [v.value for v in data]


    def items(self):
        data = self._contents('items')
        return [(k, v.value) for k, v in data]


    def __repr__(self):
        d = dict(self.items())
        return '%s(timeout=%s, size=%s, data=%s)' % (self.__class__.__name__, self._timeout, self._size, repr(d))


if __name__ == '__main__':

    from time import sleep

    ls = LruDict(timeout=100, size=5)

    print 'expiring items by size'
    l = 10
    for x in range(l):
        ls[x] = ''
        print ls
    print '\nexpiring items by time'

    ls = LruDict(timeout=1, size=100)
    print ls
    for x in xrange(10):
        ls[x] = ''
        print ls
        sleep(0.21)

    size = 10000
    items = 100000
    print '\ncreating a LruDict with length %d and setting %d items' % (size, items)
    ls = LruDict(timeout=600, size=size)
    print ls
    for x in xrange(items):
        ls[x] = ''
    print len(ls)

This container stores its items both in a dict (for direct access) and in a bi-directionally linked list, which enables it to update itself in essentially O(1) time. Cleaning is performed on every access. It starts at the 'old' end of the pile and stops when no more expired items are found and the number of items is within the size limit. No iteration over the entire list is ever needed, and no separate thread is used for cleaning either.

The container is gets a lock if module 'thread' is found at instantiation time in sys.modules. 'thread' will be imported by 'threading', so if your code uses either module, the container will be threadsafe.

This container scales well and should be useful e.g. for session storage in web servers.

2 comments

Josiah Carlson 17 years, 5 months ago  # | flag

There already exists various LRU implementations in the cookbook.

Michael Palmer (author) 17 years, 5 months ago  # | flag

True... ... and searching for 'lru' turns up quite a few of them. Well, reinventing the wheel is at least educational if nothing else... this container though applies both a time limit and strives for thread safety, so there may yet be a little bit of merit in this recipe.