This is a simple maze generator & solver written in Python. It is written as a game, consisting of classes which can read mazes from STDIN or a file. It provides a a random maze generator game, which can generate mazes of any dimension and solve it. Use it for fun and learning.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 | """
Amaze - A completely object-oriented Pythonic maze generator/solver.
This can generate random mazes and solve them. It should be
able to solve any kind of maze and inform you in case a maze is
unsolveable.
This uses a very simple representation of a mze. A maze is
represented as an mxn matrix with each point value being either
0 or 1. Points with value 0 represent paths and those with
value 1 represent blocks. The problem is to find a path from
point A to point B in the matrix.
The matrix is represented internally as a list of lists.
Have fun :-)
"""
import sys
import random
import optparse
class MazeReaderException(Exception):
pass
class MazeReader(object):
""" Read a maze from different input sources """
STDIN = 0
FILE = 1
SOCKET = 2
def __init__(self):
self.maze_rows = []
pass
def readStdin(self):
""" Read a maze from standard input """
print 'Enter a maze'
print 'You can enter a maze row by row'
print
data = raw_input('Enter the dimension of the maze as Width X Height: ')
w, h = data.split()
w, h = int(w), int(h)
for x in range(h):
row = ''
while not row:
row = raw_input('Enter row number %d: ' % (x+1))
row = row.split()
if len(row) != w:
raise MazeReaderException,'invalid size of maze row'
self.maze_rows.append(row)
def readFile(self):
""" Read a maze from an input file """
fname = raw_input('Enter maze filename: ')
try:
f = open(fname)
lines = f.readlines()
f.close()
# See if this is a valid maze
lines = [ line for line in lines if line.strip() ]
w = len(lines[0].split())
for line in lines:
row = line.split()
if len(row) != w:
raise MazeReaderException, 'Invalid maze file - error in maze dimensions'
else:
self.maze_rows.append(row)
except (IOError, OSError), e:
raise MazeReaderException, str(e)
def getData(self):
return self.maze_rows
def readMaze(self, source=STDIN):
""" Read a maze from the input source """
if source==MazeReader.STDIN:
self.readStdin()
elif source == MazeReader.FILE:
self.readFile()
return self.getData()
class MazeFactory(object):
""" Factory class for Maze object """
def makeMaze(self, source=MazeReader.STDIN):
""" Create a maze and return it. The source is
read from the 'source' argument """
reader = MazeReader()
return Maze(reader.readMaze(source))
def makeRandomMaze(self, dimension):
""" Generate a random maze of size dimension x dimension """
rows = []
for x in range(dimension):
row = []
for y in range(dimension):
row.append(random.randrange(2))
random.shuffle(row)
rows.append(row)
return Maze(rows)
class MazeError(Exception):
""" An exception class for Maze """
pass
class Maze(object):
""" A class representing a maze """
def __init__(self, rows=[[]]):
self._rows = rows
self.__validate()
self.__normalize()
def __str__(self):
s = '\n'
for row in self._rows:
for item in row:
s = ''.join((s,' ',str(item),' '))
s = ''.join((s,'\n\n'))
return s
def __validate(self):
""" Validate the maze """
# Get length of first row
width = len(self._rows[0])
widths = [len(row) for row in self._rows]
if widths.count(width) != len(widths):
raise MazeError, 'Invalid maze!'
self._height = len(self._rows)
self._width = width
def __normalize(self):
""" Normalize the maze """
# This converts any number > 0 in the maze to 1
for x in range(len(self._rows)):
row = self._rows[x]
row = map(lambda x: min(int(x), 1), row)
self._rows[x] = row
def getHeight(self):
""" Return the height of the maze """
return self._height
def getWidth(self):
""" Return the width of the maze """
return self._width
def validatePoint(self, pt):
""" Validate the point pt """
x,y = pt
w = self._width
h = self._height
# Don't support Pythonic negative indices
if x > w - 1 or x<0:
raise MazeError, 'x co-ordinate out of range!'
if y > h - 1 or y<0:
raise MazeError, 'y co-ordinate out of range!'
pass
def getItem(self, x, y):
""" Return the item at location (x,y) """
self.validatePoint((x,y))
w = self._width
h = self._height
# This is based on origin at bottom-left corner
# y-axis is reversed w.r.t row arrangement
# Get row
row = self._rows[h-y-1]
return row[x]
def setItem(self, x, y, value):
""" Set the value at point (x,y) to 'value' """
h = self._height
self.validatePoint((x,y))
row = self._rows[h-y-1]
row[x] = value
def getNeighBours(self, pt):
""" Return a list of (x,y) locations of the neighbours
of point pt """
self.validatePoint(pt)
x,y = pt
h = self._height
w = self._width
# There are eight neighbours for any point
# inside the maze. However, this becomes 3 at
# the corners and 5 at the edges
poss_nbors = (x-1,y),(x-1,y+1),(x,y+1),(x+1,y+1),(x+1,y),(x+1,y-1),(x,y-1),(x-1,y-1)
nbors = []
for xx,yy in poss_nbors:
if (xx>=0 and xx<=w-1) and (yy>=0 and yy<=h-1):
nbors.append((xx,yy))
return nbors
def getExitPoints(self, pt):
""" Return a list of exit points at point pt """
# Get neighbour list and return if the point value
# is 0
exits = []
for xx,yy in self.getNeighBours(pt):
if self.getItem(xx,yy)==0:
exits.append((xx,yy))
return exits
def getRandomExitPoint(self, pt):
""" Return a random exit point at point (x,y) """
return random.choice(self.getExitPoints(pt))
def getRandomStartPoint(self):
""" Return a random point as starting point """
return random.choice(self.getAllZeroPoints())
def getRandomEndPoint(self):
""" Return a random point as ending point """
return random.choice(self.getAllZeroPoints())
def getAllZeroPoints(self):
""" Return a list of all points with
zero value """
points = []
for x in range(self._width):
for y in range(self._height):
if self.getItem(x,y)==0:
points.append((x,y))
return points
def calcDistance(self, pt1, pt2):
""" Calculate the distance between two points """
# The points should be given as (x,y) tuples
self.validatePoint(pt1)
self.validatePoint(pt2)
x1,y1 = pt1
x2,y2 = pt2
return pow( (pow((x1-x2), 2) + pow((y1-y2),2)), 0.5)
def calcXDistance(self, pt1, pt2):
""" Calculate the X distance between two points """
# The points should be given as (x,y) tuples
self.validatePoint(pt1)
self.validatePoint(pt2)
x1, y1 = pt1
x2, y2 = pt2
return abs(x1-x2)
def calcYDistance(self, pt1, pt2):
""" Calculate the Y distance between two points """
# The points should be given as (x,y) tuples
self.validatePoint(pt1)
self.validatePoint(pt2)
x1, y1 = pt1
x2, y2 = pt2
return abs(y1-y2)
def calcXYDistance(self, pt1, pt2):
""" Calculate the X-Y distance between two points """
# The points should be given as (x,y) tuples
self.validatePoint(pt1)
self.validatePoint(pt2)
x1, y1 = pt1
x2, y2 = pt2
return abs(y1-y2) + abs(x1-x2)
def getData(self):
""" Return the maze data """
return self._rows
class MazeSolver(object):
""" Maze solver class """
def __init__(self, maze):
self.maze = maze
self._start = (0,0)
self._end = (0,0)
# Current point
self._current = (0,0)
# Solve path
self._path = []
# Number of cyclic loops
self._loops = 0
# Solvable flag
self.unsolvable = False
# xdiff
self._xdiff = 0.0
# ydiff
self._ydiff = 0.0
# List keeping cycles (generations)
self.cycles = []
# Number of retraces
self._numretrace = 0
# Map for exit points
self._pointmap = {}
# Number of all zero points
self._numzeropts = 0
# Map for retraced points
self._retracemap = {}
# Cache for keys of above
self._retracekeycache = []
# Number of times retracemap is not updated
# with a new point
self._lastupdate = 0
def setStartPoint(self, pt):
self.maze.validatePoint(pt)
self._start = pt
def setEndPoint(self, pt):
self.maze.validatePoint(pt)
self._end = pt
def boundaryCheck(self):
""" Check boundaries of start and end points """
exits1 = self.getExitPoints(self._start)
exits2 = self.getExitPoints(self._end)
if len(exits1)==0 or len(exits2)==0:
return False
return True
def setCurrentPoint(self, point):
""" Set the current point """
# print 'Current point is',point
self._current = point
self._xdiff = abs(self._current[0] - self._end[0])
self._ydiff = abs(self._current[1] - self._end[1])
self._path.append(point)
def isSolved(self):
""" Whether the maze is solved """
return (self._current == self._end)
def checkDeadLock(self, point1, point2):
pt1 = self.getClosestPoint(self.getExitPoints(point1))
pt2 = self.getClosestPoint(self.getExitPoints(point2))
if pt1==point2 and pt2==point1:
return True
return False
def getExitPoints(self, point):
""" Get exit points for 'point' """
points = self._pointmap.get(point)
if points==None:
# We are using shortest-distance algorithm
points = self.maze.getExitPoints(point)
self._pointmap[point] = points
return points
def getNextPoint(self):
""" Get the next point from the current point """
points = self.getExitPoints(self._current)
point = self.getBestPoint(points)
while self.checkClosedLoop(point):
if self.endlessLoop():
point = None
break
# Save point
point2 = point
point = self.getNextClosestPointNotInPath(points, point2)
if not point:
# Try retracing path
point = self.retracePath()
return point
def retracePath(self):
# Retrace point by point in path, till
# you get to a point which provides an
# alternative.
print 'Retracing...'
path = self._path[:]
path.reverse()
self._numretrace += 1
try:
idx = path[1:].index(self._current)
except:
idx = path.index(self._current)
pathstack = []
for x in range(idx+1, len(path)):
p = path[x]
if p in pathstack: continue
pathstack.append(p)
if p != self._path[-1]:
# print 'Current point is',p
self._path.append(p)
if p != self._start:
points = self.getExitPoints(p)
point = self.getNextClosestPointNotInPath(points, self.getClosestPoint(points))
self._retracemap[p] = self._retracemap.get(p, 0) + 1
else:
# Add path to cycle
path = self.sortPointsByXYDistance(self._path[:-1])
self.cycles.append((path, self._path[:-1]))
# Reset solver state
self._path = []
self._loops = 0
self._retracemap[p] = self._retracemap.get(p, 0) + 1
return p
def endlessLoop(self):
if self._retracemap:
# If the retrace map has not been updated for a while
# increment lastupdate count
if self._retracemap.keys() == self._retracekeycache:
self._lastupdate += 1
self._retracekeycache = self._retracemap.keys()
# If lastupdate count reaches the total number of points
# it could mean we exhausted all possible paths.
if self._lastupdate > self.maze.getWidth()*self.maze.getHeight():
print 'Exited because of retracekeycache overflow'
return True
# If retrace has gone through all zero points and not
# yet found a solution, then we are hitting a dead-lock.
elif len(self._retracemap.keys())> self._numzeropts - 1:
print 'Exited because number of points exceeded zero points'
return True
else:
# If the retrace path contains only one point
if len(self._retracemap.keys())==1:
val = self._retracemap.get(self._retracemap.keys()[0])
# If we hit the same point more than the number of
# zero points in the maze, it signals a dead-lock.
if val>self._numzeropts:
print 'Exited because we are oscillating'
return True
return False
def checkClosedLoop(self, point):
""" See if this point is causing a closed loop """
l = range(0, len(self._path)-1, 2)
l.reverse()
for x in l:
if self._path[x] == point:
self._loops += 1
# loop = tuple(self._path[x:])
# print 'Point=>',point, len(self._path)
return True
return False
def getBestPoint(self, points):
""" Get the best point """
if len(self.cycles)==0:
# First try min point
point = self.getClosestPoint(points)
# Save point
point2 = point
# Point for trying alternate
altpoint = point
point = self.getNextClosestPointNotInPath(points, point2)
if not point:
point = point2
else:
allcycles=[]
map(allcycles.extend, [item[0] for item in self.cycles])
if self._current==self._start or self._current in allcycles:
# print 'FOUND IT =>',self._current
history = []
for path in [item[1] for item in self.cycles]:
path.reverse()
try:
idx = path.index(self._current)
next = path[idx-1]
history.append(next)
except:
pass
point = self.getDifferentPoint(points, history)
if not point:
point = self.getAlternatePoint(points, history[-1])
else:
# Not there
point2 = self.getClosestPoint(points)
point = self.getNextClosestPointNotInPath(points, point2)
if not point:
point = point2
altpoint = point
return point
def sortPointsByXYDistance(self, points):
""" Sort list of points by X+Y distance """
distances = [(self.maze.calcXYDistance(point, self._end), point) for point in points]
distances.sort()
points2 = [item[1] for item in distances]
return points2
def sortPointsByDistances(self, points):
""" Sort points according to distance from end point """
if self._xdiff>self._ydiff:
distances = [(self.maze.calcXDistance(point, self._end), point) for point in points]
elif self._xdiff<self._ydiff:
distances = [(self.maze.calcYDistance(point, self._end), point) for point in points]
else:
distances = [(self.maze.calcXYDistance(point, self._end), point) for point in points]
distances.sort()
points2 = [item[1] for item in distances]
return points2
def sortPoints(self, points):
return self.sortPointsByDistances(points)
def getClosestPoint(self, points):
""" Return the closest point from current
to the end point from a list of exit points """
points2 = self.sortPoints(points)
# Min distance point
closest = points2[0]
return closest
def getDifferentPoint(self, points1, points2):
""" Return a random point in points1 which is not
in points2 """
l = [pt for pt in points1 if pt not in points2]
if l:
return random.choice(l)
return None
def getAlternatePoint(self, points, point):
""" Get alternate point """
print 'Trying alternate...',self._current, point
points2 = points[:]
if point in points2:
points2.remove(point)
if points2:
return random.choice(points2)
else:
return point
return None
def getNextClosestPoint(self, points, point):
""" After point 'point' get the next closest point
to the end point from list of points """
points2 = self.sortPoints(points)
idx = points2.index(point)
try:
return points2[idx+1]
except:
return None
def getNextClosestPointNotInPath(self, points, point):
point2 = point
while point2 in self._path:
point2 = self.getNextClosestPoint(points, point2)
return point2
def solve(self):
""" Solve the maze """
print 'Starting point is', self._start
print 'Ending point is', self._end
# First check if both start and end are same
if self._start == self._end:
print 'Start/end points are the same. Trivial maze.'
print [self._start, self._end]
return None
# Check boundary conditions
if not self.boundaryCheck():
print 'Either start/end point are unreachable. Maze cannot be solved.'
return None
# Proper maze
print 'Maze is a proper maze.'
# Initialize solver
self.setCurrentPoint(self._start)
self._numzeropts = len(self.maze.getAllZeroPoints())
self.unsolvable = False
print 'Solving...'
while not self.isSolved():
pt = self.getNextPoint()
if pt:
self.setCurrentPoint(pt)
else:
print 'Dead-lock - maze unsolvable'
self.unsolvable = True
break
if not self.unsolvable:
print 'Final solution path is',self._path
print 'Length of path is',len(self._path)
else:
print 'Path till deadlock is',self._path
print 'Length of path is',len(self._path)
# if self.cycles:
# print 'Path with all cycles is',
# l = []
# map(l.extend, [item[1] for item in self.cycles])
# l.extend(self._path)
# print l
self.printResult()
def printResult(self):
""" Print the maze showing the path """
for x,y in self._path:
self.maze.setItem(x,y,'*')
self.maze.setItem(self._start[0], self._start[1], 'S')
self.maze.setItem(self._end[0], self._end[1], 'E')
if self.unsolvable:
print 'Maze with final path'
else:
print 'Maze with solution path'
print self.maze
class MazeGame(object):
def __init__(self, w=0, h=0):
self._start = (0,0)
self._end = (0,0)
def createMaze(self):
return None
def getStartEndPoints(self, maze):
return None
def runGame(self):
maze = self.createMaze()
if not maze:
return None
print maze
self.getStartEndPoints(maze)
# Dump it to maze.txt
open('maze.txt','w').write(str(maze))
solver = MazeSolver(maze)
open ('maze_pts.txt','w').write(str(self._start) + ' ' + str(self._end) + '\n')
solver.setStartPoint(self._start)
solver.setEndPoint(self._end)
solver.solve()
class InteractiveMazeGame(MazeGame):
def createMaze(self):
f = MazeFactory()
return f.makeMaze()
def getStartEndPoints(self, maze):
while True:
try:
pt1 = raw_input('Enter starting point: ')
x,y = pt1.split()
self._start = (int(x), int(y))
maze.validatePoint(self._start)
break
except:
pass
while True:
try:
pt2 = raw_input('Enter ending point: ')
x,y = pt2.split()
self._end = (int(x), int(y))
maze.validatePoint(self._end)
break
except:
pass
class FilebasedMazeGame(MazeGame):
def createMaze(self):
f = MazeFactory()
return f.makeMaze(MazeReader.FILE)
def getStartEndPoints(self, maze):
filename = raw_input('Enter point filename: ')
try:
line = open(filename).readlines()[0].strip()
l = line.split(')')
self._start = eval(l[0].strip() + ')')
self._end = eval(l[1].strip() + ')')
except (OSError, IOError, Exception), e:
print e
sys.exit(0)
class RandomMazeGame(MazeGame):
def __init__(self, w=0, h=0):
super(RandomMazeGame, self).__init__(w, h)
self._dimension = w
def createMaze(self):
f = MazeFactory()
return f.makeRandomMaze(self._dimension)
def getStartEndPoints(self, maze):
pt1, pt2 = (0,0), (0,0)
while pt1 == pt2:
pt1 = maze.getRandomStartPoint()
pt2 = maze.getRandomEndPoint()
self._start = pt1
self._end = pt2
class RandomMazeGame2(RandomMazeGame):
""" Random maze game with distant points """
def getStartEndPoints(self, maze):
pt1, pt2 = (0,0), (0,0)
flag = True
while flag:
pt1 = maze.getRandomStartPoint()
pt2 = maze.getRandomEndPoint()
# Try till points are at least
# half maze apart
xdist = maze.calcXDistance(pt1, pt2)
ydist = maze.calcYDistance(pt1, pt2)
if xdist>=float(maze.getWidth())/2.0 or \
ydist>=float(maze.getHeight())/2.0:
flag = False
self._start = pt1
self._end = pt2
def main():
p = optparse.OptionParser()
p.add_option('-r','--random',help='Play the random game',
dest='random',action='store_true',default=False)
p.add_option('-R','--random2',help='Play the random game with distant points',
dest='Random',action='store_true',default=False)
p.add_option('-f','--file',help='Play the file-based game',
dest='file',action='store_true',default=False)
p.add_option('-i','--interactive',help='Play the interactive game',
dest='interact',action='store_true',default=False)
p.add_option('-d','--dimension',help='Matrix dimension (required for random games)',
dest='dimension', metavar="DIMENSION")
options, args = p.parse_args()
d = options.__dict__
if d.get('random') or d.get('Random'):
dim = d.get('dimension')
if not dim:
sys.exit('Random games require -d or --dimension option.')
if d.get('random'):
game = RandomMazeGame(int(dim))
game.runGame()
elif d.get('Random'):
game = RandomMazeGame2(int(dim))
game.runGame()
elif d.get('file'):
game = FilebasedMazeGame()
game.runGame()
elif d.get('interactive'):
game = InteractiveMazeGame()
game.runGame()
if __name__ == "__main__":
if len(sys.argv)==1:
sys.argv.append('-h')
main()
|
I recently had an interview with a well-known software company when the interviewer asked me a generic algorithm to solve a maze. I came up with a quick one and he seemed to have been satisfied by it. Later on I felt I shoud implement a maze solver in pure Python from first principles to see if I could actually write one that ain't broken. The result is the above piece of code.
It also illustrates a few creational design patterns.
The program seems to be able to solve all mazes it generates correctly. At least in 40 consecutive tests, it did not break!
[Update] - Modified logic. Removed random point selection and updated with getting the best point not in path and fall-back to closest point. Also added start point retracing logic in case of deadlocks. Seems to work a lot better now.
[Updated, 16/07/06] - Fixed an error in passing point to getAlternatePoint.
[Updated, 20/07/06] - Completely rewrote logic. Use short x,y distance logic with refinement in every step. Backtracking logic now keeps history of previous failed paths and uses it to find new paths so we don't hit the same path again and again. Dead-lock detection uses better rules instead of heuristics or magic numbers. Added command line arguments.
[Updated, 24/7/06] - Updated logic for exit using retracekey cache. [Updated, 26/7/06] - Removed logic of tryalternate.
Have fun!
Hi,
May I know which version did you use to code the program? Because there's a lot of syntax error when I am writing given program by you.
Thank you so much !