class readexcel(object): """ Simple OS Independent Class for Extracting Data from Excel Files the using xlrd module found at http://www.lexicon.net/sjmachin/xlrd.htm Versions of Excel supported: 2004, 2002, XP, 2000, 97, 95, 5, 4, 3 xlrd version tested: 0.5.2 Data is extracted by creating a iterator object which can be used to return data one row at a time. The default extraction method assumes that the worksheet is in tabular format with the first nonblank row containing variable names and all subsequent rows containing values. This method returns a dictionary which uses the variables names as keys for each piece of data in the row. Data can also be extracted with each row represented by a list. Extracted data is represented fairly logically. By default dates are returned as strings in "yyyy/mm/dd" format or "yyyy/mm/dd hh:mm:ss", as appropriate. However, dates can be return as a tuple containing (Year, Month, Day, Hour, Min, Second) which is appropriate for usage with mxDateTime or DateTime. Numbers are returned as either INT or FLOAT, whichever is needed to support the data. Text, booleans, and error codes are also returned as appropriate representations. Quick Example: xl = readexcel('testdata.xls') sheetnames = xl.worksheets() for sheet in sheetnames: print sheet for row in xl.getiter(sheet): # Do Something here """ def __init__(self, filename): """ Returns a readexcel object of the specified filename - this may take a little while because the file must be parsed into memory """ import xlrd import os.path if not os.path.isfile(filename): raise NameError, "%s is not a valid filename" % filename self.__filename__ = filename self.__book__ = xlrd.open_workbook(filename) self.__sheets__ = {} self.__sheetnames__ = [] for i in self.__book__.sheet_names(): uniquevars = [] firstrow = 0 sheet = self.__book__.sheet_by_name(i) for row in range(sheet.nrows): types,values = sheet.row_types(row),sheet.row_values(row) nonblank = False for j in values: if j != '': nonblank=True break if nonblank: # Generate a listing of Unique Variable Names for Use as # Dictionary Keys In Extraction. Duplicate Names will # be replaced with "F#" variables = self.__formatrow__(types,values,False) unknown = 1 while variables: var = variables.pop(0) if var in uniquevars or var == '': var = 'F' + str(unknown) unknown += 1 uniquevars.append(str(var)) firstrow = row + 1 break self.__sheetnames__.append(i) self.__sheets__.setdefault(i,{}).__setitem__('rows',sheet.nrows) self.__sheets__.setdefault(i,{}).__setitem__('cols',sheet.ncols) self.__sheets__.setdefault(i,{}).__setitem__('firstrow',firstrow) self.__sheets__.setdefault(i,{}).__setitem__('variables',uniquevars[:]) def getiter(self, sheetname, returnlist=False, returntupledate=False): """ Return an generator object which yields the lines of a worksheet; Default returns a dictionary, specifing returnlist=True causes lists to be returned. Calling returntupledate=True causes dates to returned as tuples of (Year, Month, Day, Hour, Min, Second) instead of as a string """ if sheetname not in self.__sheets__.keys(): raise NameError, "%s is not present in %s" % (sheetname,\ self.__filename__) if returnlist: return __iterlist__(self, sheetname, returntupledate) else: return __iterdict__(self, sheetname, returntupledate) def worksheets(self): """ Returns a list of the Worksheets in the Excel File """ return self.__sheetnames__ def nrows(self, worksheet): """ Return the number of rows in a worksheet """ return self.__sheets__[worksheet]['rows'] def ncols(self, worksheet): """ Return the number of columns in a worksheet """ return self.__sheets__[worksheet]['cols'] def variables(self,worksheet): """ Returns a list of Column Names in the file, assuming a tabular format of course. """ return self.__sheets__[worksheet]['variables'] def __formatrow__(self, types, values, wanttupledate): """ Internal function used to clean up the incoming excel data """ ## Data Type Codes: ## EMPTY 0 ## TEXT 1 a Unicode string ## NUMBER 2 float ## DATE 3 float ## BOOLEAN 4 int; 1 means TRUE, 0 means FALSE ## ERROR 5 import xlrd returnrow = [] for i in range(len(types)): type,value = types[i],values[i] if type == 2: if value == int(value): value = int(value) elif type == 3: datetuple = xlrd.xldate_as_tuple(value, self.__book__.datemode) if wanttupledate: value = datetuple else: # time only no date component if datetuple[0] == 0 and datetuple[1] == 0 and \ datetuple[2] == 0: value = "%02d:%02d:%02d" % datetuple[3:] # date only, no time elif datetuple[3] == 0 and datetuple[4] == 0 and \ datetuple[5] == 0: value = "%04d/%02d/%02d" % datetuple[:3] else: # full date value = "%04d/%02d/%02d %02d:%02d:%02d" % datetuple elif type == 5: value = xlrd.error_text_from_code[value] returnrow.append(value) return returnrow def __iterlist__(excel, sheetname, tupledate): """ Function Used To Create the List Iterator """ sheet = excel.__book__.sheet_by_name(sheetname) for row in range(excel.__sheets__[sheetname]['rows']): types,values = sheet.row_types(row),sheet.row_values(row) yield excel.__formatrow__(types, values, tupledate) def __iterdict__(excel, sheetname, tupledate): """ Function Used To Create the Dictionary Iterator """ sheet = excel.__book__.sheet_by_name(sheetname) for row in range(excel.__sheets__[sheetname]['firstrow'],\ excel.__sheets__[sheetname]['rows']): types,values = sheet.row_types(row),sheet.row_values(row) formattedrow = excel.__formatrow__(types, values, tupledate) # Pad a Short Row With Blanks if Needed for i in range(len(formattedrow),\ len(excel.__sheets__[sheetname]['variables'])): formattedrow.append('') yield dict(zip(excel.__sheets__[sheetname]['variables'],formattedrow))