This package does simple polynomial manipulation: adding, multiplying, taking to powers, evaluating at a value, taking integrals and derivatives. Nothing as sophisticated as Mathematica, but useful all the same. I find that I make lots of dumb errors in multiplying out polynomials by hand (when I don't have Mathematica at my disposal), and this little script helps prevent those errors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | #!/usr/bin/env python
"""\
Polynomial.py - A set of utilities to manipulate polynomials. This consists
of a set of simple functions to convert polynomials to a Python list, and
manipulate the resulting lists for multiplication, addition, and
power functions. There is also a class that wraps these functions
to make their use a little more natural.
This can also evaluate the polynomials at a value, and take integrals
and derivatives of the polynomials.
Written by Rick Muller.
"""
import re
# Define some classes for some syntactic surgar:
class Polynomial:
def __init__(self,val):
if type(val) == type([]):
self.plist = val
elif type(val) == type(''):
self.plist = parse_string(val)
else:
raise "Unknown argument to Polynomial: %s" % val
return
def __add__(self,other): return Polynomial(add(self.plist,plist(other)))
def __radd__(self,other): return Polynomial(add(self.plist,plist(other)))
def __sub__(self,other): return Polynomial(sub(self.plist,plist(other)))
def __rsub__(self,other): return -Polynomial(sub(self.plist,plist(other)))
def __mul__(self,other): return Polynomial(multiply(self.plist,
plist(other)))
def __rmul__(self,other): return Polynomial(multiply(self.plist,
plist(other)))
def __neg__(self): return -1*self
def __pow__(self,e): return Polynomial(power(self.plist,e))
def __repr__(self): return tostring(self.plist)
def __call__(self,x1,x2=None): return peval(self.plist,x1,x2)
def integral(self): return Polynomial(integral(self.plist))
def derivative(self): return Polynomial(derivative(self.plist))
# Define some simple utility functions. These manipulate "plists", polynomials
# that are stored as python lists. Thus, 3x^2 + 2x + 1 would be stored
# as [1,2,3] (lowest to highest power of x, even though polynomials
# are typically written from highest to lowest power).
def plist(term):
"Force term to have the form of a polynomial list"
# First see if this is already a Polynomial object
try:
pl = term.plist
return pl
except:
pass
# It isn't. Try to force coercion from an integer or a float
if type(term) == type(1.0) or type(term) == type(1):
return [term]
elif type(term) == type(''):
return parse_string(term)
# We ultimately want to be able to parse a string here
else:
raise "Unsupported term can't be corced into a plist: %s" % term
return None
def peval(plist,x,x2=None):
"""\
Eval the plist at value x. If two values are given, the
difference between the second and the first is returned. This
latter feature is included for the purpose of evaluating
definite integrals.
"""
val = 0
if x2:
for i in range(len(plist)): val += plist[i]*(pow(x2,i)-pow(x,i))
else:
for i in range(len(plist)): val += plist[i]*pow(x,i)
return val
def integral(plist):
"""\
Return a new plist corresponding to the integral of the input plist.
This function uses zero as the constant term, which is okay when
evaluating a definite integral, for example, but is otherwise
ambiguous.
The math forces the coefficients to be turned into floats.
Consider importing __future__ division to simplify this.
"""
if not plist: return []
new = [0]
for i in range(len(plist)):
c = plist[i]/(i+1.)
if c == int(c): c = int(c) # attempt to cast back to int
new.append(c)
return new
def derivative(plist):
"""\
Return a new plist corresponding to the derivative of the input plist.
"""
new = []
if not plist: return new
for i in range(1,len(plist)): new.append(i*plist[i])
return new
def add(p1,p2):
"Return a new plist corresponding to the sum of the two input plists."
if len(p1) > len(p2):
new = [i for i in p1]
for i in range(len(p2)): new[i] += p2[i]
else:
new = [i for i in p2]
for i in range(len(p1)): new[i] += p1[i]
return new
def sub(p1,p2): return add(p1,mult_const(p2,-1))
def mult_const(p,c):
"Return a new plist corresponding to the input plist multplied by a const"
return [c*pi for pi in p]
def multiply(p1,p2):
"Return a new plist corresponding to the product of the two input plists"
if len(p1) > len(p2): short,long = p2,p1
else: short,long = p1,p2
new = []
for i in range(len(short)): new = add(new,mult_one(long,short[i],i))
return new
def mult_one(p,c,i):
"""\
Return a new plist corresponding to the product of the input plist p
with the single term c*x^i
"""
new = [0]*i # increment the list with i zeros
for pi in p: new.append(pi*c)
return new
def power(p,e):
"Return a new plist corresponding to the e-th power of the input plist p"
assert int(e) == e, "Can only take integral power of a plist"
new = [1]
for i in range(e): new = multiply(new,p)
return new
def parse_string(str=None):
"""\
Do very, very primitive parsing of a string into a plist.
'x' is the only term considered for the polynomial, and this
routine can only handle terms of the form:
7x^2 + 6x - 5
and will choke on seemingly simple forms such as
x^2*7 - 1
or
x**2 - 1
"""
termpat = re.compile('([-+]?\s*\d*\.?\d*)(x?\^?\d?)')
#print "Parsing string: ",str
#print termpat.findall(str)
res_dict = {}
for n,p in termpat.findall(str):
n,p = n.strip(),p.strip()
if not n and not p: continue
n,p = parse_n(n),parse_p(p)
if res_dict.has_key(p): res_dict[p] += n
else: res_dict[p] = n
highest_order = max(res_dict.keys())
res = [0]*(highest_order+1)
for key,value in res_dict.items(): res[key] = value
return res
def parse_n(str):
"Parse the number part of a polynomial string term"
if not str: return 1
elif str == '-': return -1
elif str == '+': return 1
return eval(str)
def parse_p(str):
"Parse the power part of a polynomial string term"
pat = re.compile('x\^?(\d)?')
if not str: return 0
res = pat.findall(str)[0]
if not res: return 1
return int(res)
def strip_leading_zeros(p):
"Remove the leading (in terms of high orders of x) zeros in the polynomial"
# compute the highest nonzero element of the list
for i in range(len(p)-1,-1,-1):
if p[i]: break
return p[:i+1]
def tostring(p):
"""\
Convert a plist into a string. This looks overly complex at first,
but most of the complexity is caused by special cases.
"""
p = strip_leading_zeros(p)
str = []
for i in range(len(p)-1,-1,-1):
if p[i]:
if i < len(p)-1:
if p[i] >= 0: str.append('+')
else: str.append('-')
str.append(tostring_term(abs(p[i]),i))
else:
str.append(tostring_term(p[i],i))
return ' '.join(str)
def tostring_term(c,i):
"Convert a single coefficient c and power e to a string cx^i"
if i == 1:
if c == 1: return 'x'
elif c == -1: return '-x'
return "%sx" % c
elif i:
if c == 1: return "x^%d" % i
elif c == -1: return "-x^%d" % i
return "%sx^%d" % (c,i)
return "%s" % c
def test():
print tostring([1,2.,3]) # testing floats
print tostring([1,2,-3]) # can we handle - signs
print tostring([1,-2,3])
print tostring([0,1,2]) # are we smart enough to exclude 0 terms?
print tostring([0,1,2,0]) # testing leading zero stripping
print tostring([0,1])
print tostring([0,1.0]) # testing whether 1.0 == 1: risky
print tostring(add([1,2,3],[1,-2,3])) # test addition
print tostring(multiply([1,1],[-1,1])) # test multiplication
print tostring(power([1,1],2)) # test power
# Some cases using the polynomial objects:
print Polynomial([1,2,3]) + Polynomial([1,2]) # add
print Polynomial([1,2,3]) + 1 # add
print Polynomial([1,2,3])-1 # sub
print 1-Polynomial([1,2,3]) # rsub
print 1+Polynomial([1,2,3]) # radd
print Polynomial([1,2,3])*-1 # mul
print -1*Polynomial([1,2,3]) # rmul
print -Polynomial([1,2,3]) # neg
print ''
# Work out Niklasson's raising and lowering operators:
# tests putting constants into the polynomial.
for m in range(1,4):
print 'P^a_%d = ' % m,\
1 - Polynomial([1,-1])**m*Polynomial([1,m])
print 'P^b_%d = ' % m,\
Polynomial([0,1])**m*Polynomial([1+m,-m])
print ''
# Test string parsing
print parse_string('+3x - 4x^2 + 7x^5-x+1')
print Polynomial(parse_string('+3x - 4x^2 + 7x^5-x+1'))
print Polynomial('+3x - 4x^2 + 7x^5-x+1')
print Polynomial('+3x -4x^2+7x^5-x+1') - 7
print Polynomial('5x+x^2')
# Test the integral and derivatives
print integral([])
print integral([1])
print integral([0,1])
print derivative([0,0,0.5])
p = Polynomial('x')
ip = p.integral()
dp = p.derivative()
print ip,dp
print ip(0,1) # integral of y=x from (0,1)
if __name__ == '__main__': test()
|
I'm constantly making mistakes when I multiply out simple polynomials, and this program lets me evaluate, add, subtract, multiply, and take powers of simple polynomials. There are lots of limitations to the functionality here. All polynomials have to use 'x' as the dependent variable, and the syntax that you may use is fairly limited. Still, you can do some neat things like:
>>> from Polynomial import *
>>> Polynomial('x^2+5')**2-1
x^4 + 10x^2 + 24
>>> Polynomial('x^2+5')**2-'x'
x^4 + 10x^2 - x + 25
Related Idea. please see the discussion here http://bob.pythonmac.org/archives/2005/01/29/clever-use-of-pythons-complex-numbers/
A similar Polynomial class is in scipy. There is a similar polynomial class in scipy (http://www.scipy.org): scipy.poly1d
Here are some examples:
It has many of the same features and more (also can find the roots of the polynomial).
Very nice.
I must say, I prefer this to scipy because it uses only primitive Python. Almost every attempt I have made to use code snippets that import scipy have failed for some or the other reason (other library needed, function not found...).
How would you extend this to solve for x
and then
read n polynomial strings to solve for n unknowns?