A collection of some dictionary tools
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | #========================================================================
def sumDict(d):
return reduce(lambda x,y:x+y, d.values())
#========================================================================
def avgDict(d):
return reduce(lambda x,y:x+y, d.values()) / (len(d)*1.0)
#========================================================================
def mkDict(keyList, valueList, cond=None):
'''
Make a new dict out of two lists. The first list provides keys,
the 2nd provides values. The cond is a function taking 2 arguments:
key and value. Example: lambda k,v:v%2==0
A valid item means its cond(key, value) is true. Only valid items
are included in the returned dict.
>>> a
[0, 1, 2, 3, 4]
>>> b= [chr(x) for x in range(65,70)]
>>> b
['A', 'B', 'C', 'D', 'E']
>>> mkDict(b,a)
{'A': 0, 'C': 2, 'B': 1, 'E': 4, 'D': 3}
>>> mkDict(b,a,lambda x,y:y%2==0)
{'A': 0, 'C': 2, 'E': 4}
Note:
mkDict(a,b) (without the conditional check) is equavilant to
dict(zip(a,b)), which is much faster. If you know there's no
conditional check, better use dict(zip(a,b)) instead.
'''
if cond==None:
return dict(zip(keyList, valueList))
else:
return dict( [(k,v) for k,v in zip(keyList, valueList) if cond(k,v)] )
#========================================================================
def trimDict(aDict, cond=(lambda k,v:1)):
''' Return a new dict in which its items whose cond(k,v) == true
are removed (discarded) from aDict.
The cond is a function taking 2 arguments: key and value
>>> g
{'A': 0, 'C': 2, 'B': 1, 'E': 4, 'D': 3}
>>> trimDict(g, lambda x,y:y%2!=0)
{'A': 0, 'C': 2, 'E': 4}
'''
tmp={}
[tmp.setdefault(k,v) for k,v in aDict.items() if not cond(k,v)]
return tmp.copy()
#========================================================================
def reDict(aDict, func, cond=(lambda k,v:1), delUnchanged=0):
'''
Given aDict, return a new dict with valid items (= items whose
cond(key, value) is true) been modified by the function func.
if delUnchanged, then those invalid items are excluded from
the returned dict.
>>> d
{'B': 1, 'D': 3}
>>> reDict(d, lambda x:x**2)
{'B': 1, 'D': 9}
>>> g
{'A': 0, 'C': 2, 'B': 1, 'E': 4, 'D': 3}
>>> reDict(g, lambda x:-x, lambda k,v: v%2==0)
{'A': 0, 'C': -2, 'B': 1, 'E': -4, 'D': 3}
>>> reDict(g, lambda x:-x, lambda k,v: v%2==0, delUnchanged=1)
{'A': 0, 'C': -2, 'E': -4}
'''
tmp={}
if delUnchanged:
[tmp.setdefault(k,func(v)) for k,v in aDict.items() if cond(k,v)]
else:
[tmp.setdefault(k,(cond(k,v) and func(v) or v)) for k,v in aDict.items()]
return tmp.copy()
#========================================================================
def normDict(d, normalizeTo=1):
''' Normalize the values of d by setting the largest value in d.values
to normalizeTo. The return dict will have it's values spreading
between 0~normalizeTo'''
ks = d.keys()
vs = d.values()
vMax = max(vs)
vs= [ x/(vMax*1.0)*normalizeTo for x in vs]
return dict(zip(ks, vs))
#========================================================================
def normDictSumTo(d, sumTo=1):
''' Normalize the values of d to sumTo. The returned dict will
have value sum = sumTo
'''
ks = d.keys()
vs = d.values()
sum = reduce(lambda x,y:x+y, vs)
vs= [ x/(sum*1.0)*sumTo for x in vs]
return dict(zip(ks, vs))
#========================================================================
def accumDict(d, normalizeTo=None):
''' if d.values=[1,2,3,4,5]:
accumDict(d).values ==> [1, 3, 6, 10, 15]
if d.values=[0.25, 0.25, 0.25, 0.25]
accumDict(d).values ==> [0.25, 0.50, 0.75, 1.00]
Required: odict()
Ordered Dictionary Class
Dave Benjamin
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/161403
'''
ks = d.keys()
vs = d.values()
if normalizeTo: vs = normListSumTo(vs, sumTo=normalizeTo)
r = range(1, len(vs))
newList=[vs[0]]
for i in r:
newList.append( newList[-1]+ vs[i] )
odic = odict()
for i in range(len(newList)):
odic[ks[i]] =newList[i]
return odic
#========================================================================
def fallInDict(val, aDict, baseValue=0):
'''
oo:
{
'a':3,
'b':5,
'c':2
}
accumDict(oo):
{
'a':3,
'b':8,
'c':10
}
fallInDict(0, oo)=0
fallInDict(1, oo)=0
fallInDict(2, oo)=0
fallInDict(3, oo)=0
fallInDict(4, oo)=1
fallInDict(5, oo)=1
fallInDict(6, oo)=1
fallInDict(7, oo)=1
fallInDict(8, oo)=1
fallInDict(9, oo)=2
fallInDict(10, oo)=2
When val out of range:
fallInDict(-1, oo)= -1
fallInDict(11, oo)= -2
fallInDict(12, oo)= -2
'''
if val<baseValue: return -1
acd = accumDict(aDict)
if val>acd.values()[-1]: return -2
ra = range(len(acd))
for i in ra:
vInDict = acd.values()[i]
if val <= vInDict: break
return aDict.keys()[i]
#========================================================================
def randomPickDict(d):
''' given a diictionary d, with all values are numbers,
randomly pick an item and return it's key according
to the percentage of its values'''
ks = d.keys()
vs = accumList(d.values(),1)
return ks[ findIndex( vs, random.random()) ]
#========================================================================
def sumInDict(L):
''' Given a list L:
[ {'S': [s11,s12,s13], 'V':[v11,v12,v13], ...},
{'S': [s21,s22,s23], 'V':[v21,v22,v23], ...},
{'S': [s31,s32,s33], 'V':[v31,v32,v33], ...},
... ]
Return a dict:
{'S': [s1,s2,s3], 'V':[v1,v2,v3], ...}
where s1 = s11 + s21 + s31 + ...
s2 = s12 + s22 + s32 + ...
'''
keys = L[0].keys()
new={}
for k in keys:
new[k] = [] # Init 'S':[]
for x in L: # x = {'S': [s11,s12,s13], 'V':[v11,v12,v13], ...}
y = x[k] # y = [s11,s12,s13]
new[k].append(y)
''' new[k] = [ [s11,s12,s13],[s21,s22,s23],[s31,s32,s33], ...]
Then use sumInList=> {'S': [s1,s2,s3],'V': [v1,v2,v3],... }'''
new[k] = sumInList(new[k])
return new
#========================================================================
def avgInDict(L):
''' Given a list L:
[ {'S': [s11,s12,s13], 'V':[v11,v12,v13], ...},
{'S': [s21,s22,s23], 'V':[v21,v22,v23], ...},
{'S': [s31,s32,s33], 'V':[v31,v32,v33], ...},
... ]
Return a dict:
{'S': [s1,s2,s3], 'V':[v1,v2,v3], ...}
where s1 = avg of (s11 + s21 + s31 + ...)
s2 = avg of (s12 + s22 + s32 + ...)
'''
''' First turn L into:
{'S': [ [s11,s12,s13],[s21,s22,s23],[s31,s32,s33], ...],
'V': [ [v11,v12,v13],[v21,v22,v23],[v31,v32,v33], ...],
... } '''
keys = L[0].keys()
new={}
for k in keys:
new[k] = [] # Init 'S':[]
for x in L: # x = {'S': [s11,s12,s13], 'V':[v11,v12,v13], ...}
y = x[k] # y = [s11,s12,s13]
new[k].append(y)
''' new[k] = [ [s11,s12,s13],[s21,s22,s23],[s31,s32,s33], ...]
Then use avgInList=> {'S': [s1,s2,s3],'V': [v1,v2,v3],... }'''
new[k] = avgInList(new[k])
return new
#========================================================================
def sumInDict2(D):
''' Given a dict:
{'A':{'S': [s11,s12,s13], 'V':[v11,v12,v13], ...},
'B':{'S': [s21,s22,s23], 'V':[v21,v22,v23], ...},
'C':{'S': [s31,s32,s33], 'V':[v31,v32,v33], ...}, ...
}
Return a dict:
{'S': [s1,s2,s3], 'V':[v1,v2,v3], ...}
where s1 = s11 + s21 + s31 + ...
s2 = s12 + s22 + s32 + ...
'''
return sumInDict(D.values())
#========================================================================
def avgInDict2(D):
''' Given a dict:
{'A':{'S': [s11,s12,s13], 'V':[v11,v12,v13], ...},
'B':{'S': [s21,s22,s23], 'V':[v21,v22,v23], ...},
'C':{'S': [s31,s32,s33], 'V':[v31,v32,v33], ...}, ...
}
Return a dict:
{'S': [s1,s2,s3], 'V':[v1,v2,v3], ...}
where s1 = avg of (s11 + s21 + s31 + ...)
s2 = avg of (s12 + s22 + s32 + ...)
'''
return avgInDict(D.values())
#========================================================================
|
Example: *****[ randomPickDict ]***** p = {'a':1, 'c':6, 'b':3 } s = {'a':0, 'b':0, 'c':0 }
Pick 1000 times to see if it works:
for i in range(1000): k =randomPickDict(p) s[k]+=1 s: { 'a':89, 'c':623, 'b':288 }
Reference:
--- List Tools (Runsun Pan): http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/278258
--- odict()(Dave Benjamin): http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/161403
findIndex. where does the findIndex in randomPickDict(d) comes from?
Sorry. overlooked the links at the bottom.