1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | #
# genetic.py
#
import random
MAXIMIZE, MINIMIZE = 11, 22
class Individual(object):
alleles = (0,1)
length = 30
seperator = ''
optimization = MINIMIZE
def __init__(self, chromosome=None):
self.chromosome = chromosome or self._makechromosome()
self.score = None # set during evaluation
def _makechromosome(self):
"makes a chromosome from randomly selected alleles."
return [random.choice(self.alleles) for gene in range(self.length)]
def evaluate(self, optimum=None):
"this method MUST be overridden to evaluate individual fitness score."
pass
def crossover(self, other):
"override this method to use your preferred crossover method."
return self._twopoint(other)
def mutate(self, gene):
"override this method to use your preferred mutation method."
self._pick(gene)
# sample mutation method
def _pick(self, gene):
"chooses a random allele to replace this gene's allele."
self.chromosome[gene] = random.choice(self.alleles)
# sample crossover method
def _twopoint(self, other):
"creates offspring via two-point crossover between mates."
left, right = self._pickpivots()
def mate(p0, p1):
chromosome = p0.chromosome[:]
chromosome[left:right] = p1.chromosome[left:right]
child = p0.__class__(chromosome)
child._repair(p0, p1)
return child
return mate(self, other), mate(other, self)
# some crossover helpers ...
def _repair(self, parent1, parent2):
"override this method, if necessary, to fix duplicated genes."
pass
def _pickpivots(self):
left = random.randrange(1, self.length-2)
right = random.randrange(left, self.length-1)
return left, right
#
# other methods
#
def __repr__(self):
"returns string representation of self"
return '<%s chromosome="%s" score=%s>' % \
(self.__class__.__name__,
self.seperator.join(map(str,self.chromosome)), self.score)
def __cmp__(self, other):
if self.optimization == MINIMIZE:
return cmp(self.score, other.score)
else: # MAXIMIZE
return cmp(other.score, self.score)
def copy(self):
twin = self.__class__(self.chromosome[:])
twin.score = self.score
return twin
class Environment(object):
def __init__(self, kind, population=None, size=100, maxgenerations=100,
crossover_rate=0.90, mutation_rate=0.01, optimum=None):
self.kind = kind
self.size = size
self.optimum = optimum
self.population = population or self._makepopulation()
for individual in self.population:
individual.evaluate(self.optimum)
self.crossover_rate = crossover_rate
self.mutation_rate = mutation_rate
self.maxgenerations = maxgenerations
self.generation = 0
self.report()
def _makepopulation(self):
return [self.kind() for individual in range(self.size)]
def run(self):
while not self._goal():
self.step()
def _goal(self):
return self.generation > self.maxgenerations or \
self.best.score == self.optimum
def step(self):
self.population.sort()
self._crossover()
self.generation += 1
self.report()
def _crossover(self):
next_population = [self.best.copy()]
while len(next_population) < self.size:
mate1 = self._select()
if random.random() < self.crossover_rate:
mate2 = self._select()
offspring = mate1.crossover(mate2)
else:
offspring = [mate1.copy()]
for individual in offspring:
self._mutate(individual)
individual.evaluate(self.optimum)
next_population.append(individual)
self.population = next_population[:self.size]
def _select(self):
"override this to use your preferred selection method"
return self._tournament()
def _mutate(self, individual):
for gene in range(individual.length):
if random.random() < self.mutation_rate:
individual.mutate(gene)
#
# sample selection method
#
def _tournament(self, size=8, choosebest=0.90):
competitors = [random.choice(self.population) for i in range(size)]
competitors.sort()
if random.random() < choosebest:
return competitors[0]
else:
return random.choice(competitors[1:])
def best():
doc = "individual with best fitness score in population."
def fget(self):
return self.population[0]
return locals()
best = property(**best())
def report(self):
print "="*70
print "generation: ", self.generation
print "best: ", self.best
---------------------------------------------------------------------
#
# onemax.py - useage example
#
# the fittest individual will have a chromosome consisting of 30 '1's
#
import genetic
class OneMax(genetic.Individual):
optimization = genetic.MAXIMIZE
def evaluate(self, optimum=None):
self.score = sum(self.chromosome)
def mutate(self, gene):
self.chromosome[gene] = not self.chromosome[gene] # bit flip
if __name__ == "__main__":
env = genetic.Environment(OneMax, maxgenerations=1000, optimum=30)
env.run()
|
Tags: algorithms
Changes to make code executable. Add the following def to onemax.py
and replace in genetic.py the line
with
The same thing with Pyevolve ( http://pyevolve.sourceforge.net ):