## Canvas - a quick and dirty interface to matplotlib
I do not know about you but I find matplotlib fanatstic but overwhelming. I can never remember its syntax, yet I find myself often repeating the same boilerplate code.
This simple library is not meant to be general but it allows me to produce the quick and dirty plots I often need.
canvas.py exposes a single object, Canvas, which has methods plot,`hist`,`errorbar`,`ellipses`,`imshow`, and save. These methods can be chained to overlap diffent types of plots. For example:
>>> from random import gauss >>> from math import sin, cos >>> from canvas import Canvas>>> gaussian = [gauss(0,1) for i in range(1000)] >>> Canvas('My First Image').hist(gaussian).save('img1.png')
hist data is an array of numbers. [output](https://github.com/mdipierro/canvas/blob/master/screenshots/img1.png)
>>> spiral = [(x*cos(0.1*x),x*sin(0.1*x)) for x in range(0,300)] >>> Canvas('My Second Image').plot(spiral).save('img2.png')
plot data is an array of 2-tuples, (x,y). [output](https://github.com/mdipierro/canvas/blob/master/screenshots/img2.png)
>>> points = [(x,x+gauss(0,1),0.5) for x in range(20)] >>> Canvas('My Third Image').errorbar(points).plot(points).save('img3.png')
errorbar data is an array of 3-tuples, (x,y,dy). In the example above the plot is superimposed to errorbars. [output](https://github.com/mdipierro/canvas/blob/master/screenshots/img3.png)
>>> blobs = [(gauss(0,1),gauss(0,1),0.05,0.05) for i in range(100)] >>> Canvas('My Fourth Image').ellipses(blobs).save('img4.png')
ellipses data is an array of 4-tuples, (x,y,dx,dy). [output](https://github.com/mdipierro/canvas/blob/master/screenshots/img4.png)
>>> waves = [[sin(0.1*x)*cos(0.1*x*y) for x in range(20)] for y in range(20)] >>> Canvas('My Fifth Image').imshow(waves).save('img5.png')
imshow data is a square 2D array of numbers. [output](https://github.com/mdipierro/canvas/blob/master/screenshots/img5.png)
The names of the methods of the canvas objects are the same as the methods of the corresponding matplotlib axis object.
### Django example
- def my_image(request):
- data = [gauss(0,1) for i in range(1000)] image_data = Canvas('title').hist(data).binary() return HttpResponse(image_data, mimetype="image/png")
### web2py example
- def my_image():
- data = [gauss(0,1) for i in range(1000)] response.headers['Content-type'] = 'image/png' return Canvas('title').hist(data).binary()
### Flask example
@app.route('/my_image') def my_image():
data = [gauss(0,1) for i in range(1000)] image_data = Canvas('title').hist(data).binary() response.headers['Content-type'] = 'image/png' return Response(image_data)
## Arguments
Here is the full signature:
- class Canvas(object):
- def __init__(self,title='title',xlab='x',ylab='y',xrange=None,yrange=None): ... def save(self,filename='plot.png'): ... def hist(self,data,bins=20,color='blue',legend=None): ... def plot(self,data,color='blue',style='-',width=2,legend=None): ... def errorbar(self,data,color='black',marker='o',width=2,legend=None): ... def ellipses(self,data,color='blue',width=0.01,height=0.01): ... def imshow(self,data,interpolation='bilinear'): ...
## Installation
You'll need numpy and matplotlib.
From source:
python setup.py install
If you want to install the dependancies using pip you need to process this way:
pip install numpy # THEN pip install matplotlib
Be sure to have numpy installed before installing matplotlib otherwise the installation will fail.
## License
3-clause BSD license