Top-rated recipes tagged "theory"http://code.activestate.com/recipes/tags/theory/top/2013-01-31T23:41:21-08:00ActiveState Code RecipesInverse modulo p (Python)
2013-01-31T23:41:21-08:00Justin Shawhttp://code.activestate.com/recipes/users/1523109/http://code.activestate.com/recipes/576737-inverse-modulo-p/
<p style="color: grey">
Python
recipe 576737
by <a href="/recipes/users/1523109/">Justin Shaw</a>
(<a href="/recipes/tags/mod/">mod</a>, <a href="/recipes/tags/modulo/">modulo</a>, <a href="/recipes/tags/number/">number</a>, <a href="/recipes/tags/prime/">prime</a>, <a href="/recipes/tags/theory/">theory</a>).
Revision 4.
</p>
<p>Very rarely it is necessary to find the multiplicative inverse of a number in the ring of integers modulo p. Thie recipe handles those rare cases. That is, given x, an integer, and p the modulus, we seek a integer x^-1 such that x * x^-1 = 1 mod p. For example 38 is the inverse of 8 modulo 101 since 38 * 8 = 304 = 1 mod 101. The inverse only exists when a and p are relatively prime.</p>
primeList (Python)
2011-11-05T23:42:37-07:00Alexander James Wallarhttp://code.activestate.com/recipes/users/4179768/http://code.activestate.com/recipes/577935-primelist/
<p style="color: grey">
Python
recipe 577935
by <a href="/recipes/users/4179768/">Alexander James Wallar</a>
(<a href="/recipes/tags/list/">list</a>, <a href="/recipes/tags/numbers/">numbers</a>, <a href="/recipes/tags/prime/">prime</a>, <a href="/recipes/tags/primelist/">primelist</a>, <a href="/recipes/tags/primes/">primes</a>, <a href="/recipes/tags/theory/">theory</a>).
Revision 3.
</p>
<p>This module returns all the prime numbers strictly less than n. For this code to print out all of the primes n inclusive, in the range, n+1 must be substituted for n.</p>
Simple graph algorithms with a modular design (Python)
2011-04-21T13:40:32-07:00jimmy2timeshttp://code.activestate.com/recipes/users/4177690/http://code.activestate.com/recipes/577668-simple-graph-algorithms-with-a-modular-design/
<p style="color: grey">
Python
recipe 577668
by <a href="/recipes/users/4177690/">jimmy2times</a>
(<a href="/recipes/tags/algorithms/">algorithms</a>, <a href="/recipes/tags/breadth/">breadth</a>, <a href="/recipes/tags/depth/">depth</a>, <a href="/recipes/tags/directed/">directed</a>, <a href="/recipes/tags/first/">first</a>, <a href="/recipes/tags/graph/">graph</a>, <a href="/recipes/tags/object/">object</a>, <a href="/recipes/tags/oriented/">oriented</a>, <a href="/recipes/tags/python/">python</a>, <a href="/recipes/tags/search/">search</a>, <a href="/recipes/tags/theory/">theory</a>, <a href="/recipes/tags/undirected/">undirected</a>, <a href="/recipes/tags/visit/">visit</a>).
Revision 7.
</p>
<p>The purpose of this recipe is to look at algorithmic graph theory from an object-oriented perspective.</p>
<p>A graph is built on top of a dictionary indexed by its vertices, each item being the set of neighbours of the key vertex.
This ensures that iterating through the neighbours of a vertex is still efficient in sparse graphs (as with adjacency lists) while at the same time checking for adjacency is expected constant-time (as with the adjacency matrix).</p>
<p>Any valid class of graph must implement the interface defined by AbstractGraph.</p>
<p>A generic search algorithm takes as input a graph, source and target vertices and a queue.
A queue must implement the methods Q.get(), Q.put() and Q.empty() in such a way to get the desired order in visiting the vertices.</p>
<p>Given this pattern, breadth-first and depth-first search are essentially defined by the corresponding expansion policies: the first one uses an actual FIFO queue, the second one a LIFO queue (or stack).</p>
Evolutionary Algorithm (Generation of Prime Numbers) (Python)
2011-11-27T06:45:00-08:00Alexander James Wallarhttp://code.activestate.com/recipes/users/4179768/http://code.activestate.com/recipes/577964-evolutionary-algorithm-generation-of-prime-numbers/
<p style="color: grey">
Python
recipe 577964
by <a href="/recipes/users/4179768/">Alexander James Wallar</a>
(<a href="/recipes/tags/algorithm/">algorithm</a>, <a href="/recipes/tags/example/">example</a>, <a href="/recipes/tags/genetic/">genetic</a>, <a href="/recipes/tags/genetic_algorithm/">genetic_algorithm</a>, <a href="/recipes/tags/genetic_algorithms/">genetic_algorithms</a>, <a href="/recipes/tags/list/">list</a>, <a href="/recipes/tags/number/">number</a>, <a href="/recipes/tags/of/">of</a>, <a href="/recipes/tags/prime/">prime</a>, <a href="/recipes/tags/primelist/">primelist</a>, <a href="/recipes/tags/primes/">primes</a>, <a href="/recipes/tags/theory/">theory</a>).
</p>
<p>This is an evolutionary algorithm that returns a random list of prime numbers. This code is highly inefficient for a reason. This algorithm is more of a proof of concept that if a prime was a heritable trait, it would not be a desired one. </p>
<p>Parameters:</p>
<p>isPrime --> n: number to check if it is prime
allPrimes --> n: size of list of random primes, m: the primes in the list will be between 0 and m</p>