Popular recipes tagged "neural" but not "back"http://code.activestate.com/recipes/tags/neural-back/2012-10-02T16:18:36-07:00ActiveState Code RecipesGenetic Algorithm Neural Network in Python Source Code (Python)
2012-08-16T16:31:12-07:00David Adlerhttp://code.activestate.com/recipes/users/4182015/http://code.activestate.com/recipes/578241-genetic-algorithm-neural-network-in-python-source-/
<p style="color: grey">
Python
recipe 578241
by <a href="/recipes/users/4182015/">David Adler</a>
(<a href="/recipes/tags/artificial_intelligence/">artificial_intelligence</a>, <a href="/recipes/tags/neural/">neural</a>, <a href="/recipes/tags/neural_network/">neural_network</a>).
</p>
<p>A simple genetic algorithm neural network. </p>
Artificial Neuroglial Network (ANGN) (Python)
2012-10-02T16:18:36-07:00David Adlerhttp://code.activestate.com/recipes/users/4182015/http://code.activestate.com/recipes/578242-artificial-neuroglial-network-angn/
<p style="color: grey">
Python
recipe 578242
by <a href="/recipes/users/4182015/">David Adler</a>
(<a href="/recipes/tags/artificial_intelligence/">artificial_intelligence</a>, <a href="/recipes/tags/genetic_algorithm/">genetic_algorithm</a>, <a href="/recipes/tags/genetic_algorithms/">genetic_algorithms</a>, <a href="/recipes/tags/neural/">neural</a>, <a href="/recipes/tags/neural_networks/">neural_networks</a>).
Revision 5.
</p>
<p>This is an attempt at emulating the algorithm from these scientific articles:</p>
<ol>
<li><a href="http://www.hindawi.com/journals/cmmm/2012/476324/">2011 - Artificial Astrocytes Improve Neural Network Performance</a></li>
<li><a href="http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0019109">2012 - Computational Models of Neuron-Astrocyte Interactions Lead to Improved Efficacy in the Performance of Neural Networks</a></li>
</ol>
<p>The objective of the program is to train a neural network to classify the four inputs (the dimensions of a flower) into one of three categories (three species of flower), (taken from the <a href="http://archive.ics.uci.edu/ml/datasets/Iris">Iris Data Set</a> from the UCI Machine Learning Repository). This program has two learning phases: the first is a genetic algorithm (supervised), the second is a neuroglial algorithm (unsupervised). This ANGN is a development of a previous program only consisting of a genetic algorithm which can be found <a href="http://code.activestate.com/recipes/578241-genetic-algorithm-neural-network-in-python-source-/">here</a>.</p>
<p>The second phase aims to emulate astrocytic interaction with neurons in the brain. The algorithm is based on two axioms: a) astrocytes are activated by persistent neuronal activity b) astrocytic effects occur over a longer time-scale than neurons. Each neuron has an associated astrocyte which counts the number of times its associated neuron fires (+1 for active -1 for inactive). If the counter reaches its threshold (defined as <code>Athresh</code>) the astrocyte is activated and for the next x iterations (defined as <code>Adur</code>) the astrocyte modifies the incoming weights to that particular neuron. If the counter reached a maximum due to persistent firing the incoming weights are increase by 25% for the proceeding <code>Adur</code> iterations; conversely if the counter reached a minimum due to persistent lack of firing the weights are decreased by 50% for the following <code>Adur</code> iterations). For a detailed description of the algorithm see the linked articles. For a general understanding of how this program was coded look at the pseudo-code/schematic <a href="http://commons.wikimedia.org/wiki/File:ANGN_schematic.png">here</a>.</p>
<p>Any comments for improvements are welcome. There are several issues in this program which require addressing, please scroll down below code to read about these issues.</p>
Genetic Algorithm in Python source code - AI-Junkie tutorial (Python)
2012-06-19T12:59:13-07:00David Adlerhttp://code.activestate.com/recipes/users/4182015/http://code.activestate.com/recipes/578128-genetic-algorithm-in-python-source-code-ai-junkie-/
<p style="color: grey">
Python
recipe 578128
by <a href="/recipes/users/4182015/">David Adler</a>
(<a href="/recipes/tags/algorithm/">algorithm</a>, <a href="/recipes/tags/artificial/">artificial</a>, <a href="/recipes/tags/genetic/">genetic</a>, <a href="/recipes/tags/network/">network</a>, <a href="/recipes/tags/neural/">neural</a>, <a href="/recipes/tags/python/">python</a>).
Revision 5.
</p>
<p>A simple genetic algorithm program. I followed this tutorial to make the program <a href="http://www.ai-junkie.com/ga/intro/gat1.html." rel="nofollow">http://www.ai-junkie.com/ga/intro/gat1.html.</a></p>
<p>The objective of the code is to evolve a mathematical expression which calculates a user-defined target integer.</p>
<hr />
<p>KEY:</p>
<p>chromosome = binary list (this is translated/decoded into a protein in the format number --> operator --> number etc, any genes (chromosome is read in blocks of four) which do not conform to this are ignored.</p>
<p>protein = mathematical expression (this is evaluated from left to right in number + operator blocks of two)</p>
<p>output = output of protein (mathematical expression)</p>
<p>error = inverse of difference between output and target</p>
<p>fitness score = a fraction of sum of of total errors</p>
<hr />
<p>OTHER:</p>
<p>One-point crossover is used.</p>
<p>I have incorporated <strong>elitism</strong> in my code, which somewhat deviates from the tutorial but made my code more efficient (top ~7% of population are carried through to next generation)</p>