Popular recipes tagged "matplotlib" but not "projections"http://code.activestate.com/recipes/tags/matplotlib-projections/2012-12-31T17:39:14-08:00ActiveState Code RecipesGAE Matplotlib Demo (Python) 2012-12-31T17:39:14-08:00Dima Tisnekhttp://code.activestate.com/recipes/users/4068698/http://code.activestate.com/recipes/578393-gae-matplotlib-demo/ <p style="color: grey"> Python recipe 578393 by <a href="/recipes/users/4068698/">Dima Tisnek</a> (<a href="/recipes/tags/app_engine/">app_engine</a>, <a href="/recipes/tags/gae/">gae</a>, <a href="/recipes/tags/google_app_engine/">google_app_engine</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/python/">python</a>). </p> <p>Google App Engine python 2.7 runtime includes support for numpy and matplotlib since 13-Dec-2012, however, by default, matplotlib is not supported on the development server. This workaround let you run both in developer mode and deployed on google app engine:</p> zero curve bootstrapping and forward curve generation (Python) 2012-09-10T08:07:56-07:00alexander bakerhttp://code.activestate.com/recipes/users/4166679/http://code.activestate.com/recipes/578257-zero-curve-bootstrapping-and-forward-curve-generat/ <p style="color: grey"> Python recipe 578257 by <a href="/recipes/users/4166679/">alexander baker</a> (<a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/sympy/">sympy</a>). </p> <p>example of a bootstrapping and forward curve generation this can be used to build a set of curves for different currencies</p> Script that compares various Interest Rate term structure models. (Python) 2012-09-10T08:02:34-07:00alexander bakerhttp://code.activestate.com/recipes/users/4166679/http://code.activestate.com/recipes/578256-script-that-compares-various-interest-rate-term-st/ <p style="color: grey"> Python recipe 578256 by <a href="/recipes/users/4166679/">alexander baker</a> (<a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/python/">python</a>). </p> <p>A common model used in the financial industry for modelling the short rate (think overnight rate, but actually an infinitesimally short amount of time) is the Vasicek model. # Although it is unlikely to perfectly fit the yield curve, it has some nice properties that make it a good model to work with. The dynamics of the Vasicek model are describe below.</p> <p>In this model, the parameters are constants, and the random motion is generated by the Q measure Brownian motion . An important property of the Vasicek model is that the interest rate is mean reverting to , and the tendency to revert is controlled by . Also, this process is a diffusion process, hence Markovian, which will lead to some nice closed form formulas. Finally, the future value of the interest rate is normally distributed with the distribution .</p> Speeding up computations using a lookup table part I (Python) 2011-07-02T15:14:33-07:00Kaushik Ghosehttp://code.activestate.com/recipes/users/4166965/http://code.activestate.com/recipes/577776-speeding-up-computations-using-a-lookup-table-part/ <p style="color: grey"> Python recipe 577776 by <a href="/recipes/users/4166965/">Kaushik Ghose</a> (<a href="/recipes/tags/math/">math</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/optimization/">optimization</a>). </p> <p>I needed to use the cumulative normal distribution and normal probability density functions repeatedly for some data analysis. I found that I could speed things up drastically by using a lookup table and matplotlib's builtin interpolation function.</p> Mandelbrot trajectories (Python) 2011-04-06T18:18:48-07:00Kaushik Ghosehttp://code.activestate.com/recipes/users/4166965/http://code.activestate.com/recipes/577642-mandelbrot-trajectories/ <p style="color: grey"> Python recipe 577642 by <a href="/recipes/users/4166965/">Kaushik Ghose</a> (<a href="/recipes/tags/graph/">graph</a>, <a href="/recipes/tags/interactive/">interactive</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/plotting/">plotting</a>, <a href="/recipes/tags/widget/">widget</a>). </p> <p>An interactive graph to plot the trajectory of points on and off the mandelbrot set. Illustrates the use of sliders in matplotlib</p> Benford's Law demo (Python) 2010-10-19T10:56:51-07:00Glenn Hutchingshttp://code.activestate.com/recipes/users/4175415/http://code.activestate.com/recipes/577431-benfords-law-demo/ <p style="color: grey"> Python recipe 577431 by <a href="/recipes/users/4175415/">Glenn Hutchings</a> (<a href="/recipes/tags/benford/">benford</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/plotting/">plotting</a>). </p> <p>Here's a simple program to demonstrate <a href="http://en.wikipedia.org/wiki/Benford%27s_law">Benford's Law</a>, which also shows the simple power of <a href="http://matplotlib.sourceforge.net">matplotlib</a>. It reads from a bunch of files (or stdin, if none specified), extracts the leading digits of all number-like strings found, and plots the distribution in a window together with the expected result if Benford's law applies.</p> Simple example of embeding plots in wx and running them interactively (Python) 2010-09-21T17:30:30-07:00Kaushik Ghosehttp://code.activestate.com/recipes/users/4166965/http://code.activestate.com/recipes/577402-simple-example-of-embeding-plots-in-wx-and-running/ <p style="color: grey"> Python recipe 577402 by <a href="/recipes/users/4166965/">Kaushik Ghose</a> (<a href="/recipes/tags/interactive/">interactive</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/wx/">wx</a>). </p> <p>Simple code to show how to incorporate a pylab plot into wx and then interact with it. This can form the basis of windows/apps that plot various variables that can be changing in the background.</p> Stacked graphs using matplotlib (Python) 2009-01-26T08:11:59-08:00Anand Patilhttp://code.activestate.com/recipes/users/4168675/http://code.activestate.com/recipes/576633-stacked-graphs-using-matplotlib/ <p style="color: grey"> Python recipe 576633 by <a href="/recipes/users/4168675/">Anand Patil</a> (<a href="/recipes/tags/broadband/">broadband</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/mobile/">mobile</a>, <a href="/recipes/tags/stacked_graph/">stacked_graph</a>, <a href="/recipes/tags/stream_graph/">stream_graph</a>). </p> <p>Creates stacked graphs (sometimes known as stream graphs, apparently) as recommended by Byron and Wattenberg, <a href="http://www.leebyron.com/else/streamgraph/download.php?file=stackedgraphs_byron_wattenberg.pdf" rel="nofollow">http://www.leebyron.com/else/streamgraph/download.php?file=stackedgraphs_byron_wattenberg.pdf</a></p> Generating random numbers with arbitrary distribution (Python) 2008-11-05T07:52:39-08:00Kaushik Ghosehttp://code.activestate.com/recipes/users/4166965/http://code.activestate.com/recipes/576556-generating-random-numbers-with-arbitrary-distribut/ <p style="color: grey"> Python recipe 576556 by <a href="/recipes/users/4166965/">Kaushik Ghose</a> (<a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/random_number/">random_number</a>). </p> <p>This is a class that allows you to set up an arbitrary probability distribution function and generate random numbers that follow that arbitrary distribution.</p> Generating correlated random numbers (Python) 2008-09-21T21:21:52-07:00Kaushik Ghosehttp://code.activestate.com/recipes/users/4166965/http://code.activestate.com/recipes/576512-generating-correlated-random-numbers/ <p style="color: grey"> Python recipe 576512 by <a href="/recipes/users/4166965/">Kaushik Ghose</a> (<a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/random_number/">random_number</a>). </p> <p>From this great <a href="http://www.sitmo.com/doc/Generating_Correlated_Random_Numbers">tutorial</a></p> <p>For two corelated variables, the formula is much as one would get from intuition about the meaning of correlation with some twist due to normalizing the standard deviation: $X_3 = \alpha X_1 + \sqrt{1-\alpha^2} X_2$ Where $X_1$ and $X_2$ are two independent random variables, and $\alpha$ is the coefficient of correlation between $X_1$ and $X_3$.</p> <p>In a more general sense: <br /> Let $C$ be the correlation matrix desired. Let $X_1, X_2..., X_N$ be $N$ independent random variables arranged in a row matrix $R = [X_1, X_2,....,X_N]$. Then $Q = RU$ where $U^TU = C$ gives us $N$ random variables $Q = [Y_1, Y_2, ..., Y_N]$ with the required property.</p> Polynomial explorer (Python) 2008-09-11T07:21:11-07:00Kaushik Ghosehttp://code.activestate.com/recipes/users/4166965/http://code.activestate.com/recipes/576501-polynomial-explorer/ <p style="color: grey"> Python recipe 576501 by <a href="/recipes/users/4166965/">Kaushik Ghose</a> (<a href="/recipes/tags/interactive_graphs/">interactive_graphs</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>). Revision 2. </p> <p>Polynomial explorer. You tell this module what order of polynomial you want and it will set up a figure with a graph of that polynomial plotted with x = -1 to +1. It will set up a second figure with a set of coefficient axes. You can click on the coeffiecient axes to set the coefficents. The graph will then update to reflect the values of the new coefficients.</p> <p>This code illustrates the use of mouse interaction using matplotlib</p> Customizing polar plots in matplotlib (Python) 2008-09-06T05:31:02-07:00Kaushik Ghosehttp://code.activestate.com/recipes/users/4166965/http://code.activestate.com/recipes/576493-customizing-polar-plots-in-matplotlib/ <p style="color: grey"> Python recipe 576493 by <a href="/recipes/users/4166965/">Kaushik Ghose</a> (<a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/plots/">plots</a>, <a href="/recipes/tags/polar/">polar</a>). </p> <p>This snipped illustrates the use of thetagrids and rgrids to customize the polar plot grid</p>