Most viewed recipes tagged "finance"http://code.activestate.com/recipes/tags/finance/views/2014-04-28T08:41:49-07:00ActiveState Code Recipesget a stock historical value from google finance (Python)
2008-09-07T12:03:11-07:00bussiere bussierehttp://code.activestate.com/recipes/users/4050557/http://code.activestate.com/recipes/576495-get-a-stock-historical-value-from-google-finance/
<p style="color: grey">
Python
recipe 576495
by <a href="/recipes/users/4050557/">bussiere bussiere</a>
(<a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/google/">google</a>, <a href="/recipes/tags/historical/">historical</a>, <a href="/recipes/tags/value/">value</a>).
</p>
<p>how to get a stock historical value from google finance</p>
NPV / IRR / Payback Analysis (Python)
2013-09-06T23:04:55-07:00Alia Khourihttp://code.activestate.com/recipes/users/4169084/http://code.activestate.com/recipes/576686-npv-irr-payback-analysis/
<p style="color: grey">
Python
recipe 576686
by <a href="/recipes/users/4169084/">Alia Khouri</a>
(<a href="/recipes/tags/finance/">finance</a>).
Revision 18.
</p>
<p>A few financial functions for quick analysis of an investment opportunity and a series of associated cashflows.</p>
<p>As a module, it currently provides straightforward and easy to understand implementations of the Net Present Value (NPV), Internal Rate of Return (IRR), and Payback Period functions.</p>
<p>As a script, it provides a simple command line interface which integrates the above functions into a concise analysis of the investment opportunity.</p>
<pre class="prettyprint"><code> usage: invest discount_rate [cashflow0, cashflow1, ..., cashflowN]
where
discount_rate is the rate used to discount future cashflows
to their present values
cashflow0 is the investment (always a negative value)
cashflow1 .. cashflowN values can be positive (net inflows)
or
negative (net outflows)
</code></pre>
<p>Here is an example of actual usage and output:</p>
<pre class="prettyprint"><code>$ ./invest 0.05 -10000 6000 6000 6000
----------------------------------------------------------------------
year 0 1 2 3
cashflow -10,000 6,000 6,000 6,000
Discount Rate: 5.0%
Payback: 1.67 years
IRR: 36.31%
NPV: 6339.49
==> Approve Investment of 10,000
----------------------------------------------------------------------
</code></pre>
<p><em>Note</em>: A check of the output of the Microsoft Excel NPV function against that of the function implemented here reveals a curious discrepancy/bug in the way Excel calculates its NPV. For further details see: <a href="http://www.tvmcalcs.com/blog/comments/the_npv_function_doesnt_calculate_net_present_value/" rel="nofollow">http://www.tvmcalcs.com/blog/comments/the_npv_function_doesnt_calculate_net_present_value/</a></p>
<p>Furthermore, the method used to calculate the IRR is rough to say the least and fails at fewer than 3 entries. Please use the secant method along the lines of the following haskell code from (<a href="http://www.haskell.org/haskellwiki/Haskell_Quiz/Internal_Rate_of_Return/Solution_Dolio" rel="nofollow">http://www.haskell.org/haskellwiki/Haskell_Quiz/Internal_Rate_of_Return/Solution_Dolio</a>) for greater accuracy.</p>
<pre class="prettyprint"><code>secant :: (Double -> Double) -> Double -> Double
secant f delta = fst $ until err update (0,1)
where
update (x,y) = (x - (x - y) * f x / (f x - f y), x)
err (x,y) = abs (x - y) < delta
npv :: Double -> [Double] -> Double
npv i = sum . zipWith (\t c -> c / (1 + i)**t) [0..]
irr :: [Double] -> Double
irr cashflows = secant (`npv` cashflows) (0.1**4)
</code></pre>
Multidimensional Pareto front (Python)
2012-10-13T23:26:12-07:00Jamie Bullhttp://code.activestate.com/recipes/users/4183059/http://code.activestate.com/recipes/578287-multidimensional-pareto-front/
<p style="color: grey">
Python
recipe 578287
by <a href="/recipes/users/4183059/">Jamie Bull</a>
(<a href="/recipes/tags/engineering/">engineering</a>, <a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/optimal/">optimal</a>, <a href="/recipes/tags/pareto/">pareto</a>, <a href="/recipes/tags/pareto_front/">pareto_front</a>, <a href="/recipes/tags/pareto_frontier/">pareto_frontier</a>, <a href="/recipes/tags/pareto_set/">pareto_set</a>).
Revision 2.
</p>
<p>Method for finding non-dominated options in multi-dimensional data.</p>
Brownian Motion of Stock (Python)
2009-05-19T05:16:29-07:00alexander bakerhttp://code.activestate.com/recipes/users/4166679/http://code.activestate.com/recipes/576760-brownian-motion-of-stock/
<p style="color: grey">
Python
recipe 576760
by <a href="/recipes/users/4166679/">alexander baker</a>
(<a href="/recipes/tags/finance/">finance</a>).
</p>
<p>Brownian Motion of a Stock</p>
zero curve bootstrapping and forward curve generation (Python)
2012-09-10T08:07:56-07:00alexander bakerhttp://code.activestate.com/recipes/users/4166679/http://code.activestate.com/recipes/578257-zero-curve-bootstrapping-and-forward-curve-generat/
<p style="color: grey">
Python
recipe 578257
by <a href="/recipes/users/4166679/">alexander baker</a>
(<a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/sympy/">sympy</a>).
</p>
<p>example of a bootstrapping and forward curve generation
this can be used to build a set of curves for different currencies</p>
Yahoo Stock Information (Python)
2012-08-25T17:16:47-07:00Alexander James Wallarhttp://code.activestate.com/recipes/users/4179768/http://code.activestate.com/recipes/577989-yahoo-stock-information/
<p style="color: grey">
Python
recipe 577989
by <a href="/recipes/users/4179768/">Alexander James Wallar</a>
(<a href="/recipes/tags/computation/">computation</a>, <a href="/recipes/tags/corey_goldberg/">corey_goldberg</a>, <a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/information/">information</a>, <a href="/recipes/tags/python/">python</a>, <a href="/recipes/tags/realtime/">realtime</a>, <a href="/recipes/tags/stock/">stock</a>, <a href="/recipes/tags/yahoo/">yahoo</a>).
Revision 3.
</p>
<p>This recipe is solely due to the programming of Corey Goldberg (<a href="mailto:corey@goldb.org">corey@goldb.org</a>). The only thing I did to it was make it into a class. I thought that by uploading it here that more people would come across it and more people could use it. It is really good. It gives you stock information.</p>
Pareto front (Python)
2012-08-01T09:04:04-07:00Jamie Bullhttp://code.activestate.com/recipes/users/4183059/http://code.activestate.com/recipes/578230-pareto-front/
<p style="color: grey">
Python
recipe 578230
by <a href="/recipes/users/4183059/">Jamie Bull</a>
(<a href="/recipes/tags/engineering/">engineering</a>, <a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/optimal/">optimal</a>, <a href="/recipes/tags/pareto_front/">pareto_front</a>, <a href="/recipes/tags/pareto_frontier/">pareto_frontier</a>, <a href="/recipes/tags/pareto_set/">pareto_set</a>).
</p>
<p>Function for finding a 2D <a href="http://en.wikipedia.org/wiki/Pareto_efficiency#Use_in_engineering">Pareto frontier</a> given two lists of matched length.</p>
Script that compares various Interest Rate term structure models. (Python)
2012-09-10T08:02:34-07:00alexander bakerhttp://code.activestate.com/recipes/users/4166679/http://code.activestate.com/recipes/578256-script-that-compares-various-interest-rate-term-st/
<p style="color: grey">
Python
recipe 578256
by <a href="/recipes/users/4166679/">alexander baker</a>
(<a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/matplotlib/">matplotlib</a>, <a href="/recipes/tags/python/">python</a>).
</p>
<p>A common model used in the financial industry for modelling the short rate (think overnight rate, but actually an infinitesimally short amount of time) is the Vasicek model. #
Although it is unlikely to perfectly fit the yield curve, it has some nice properties that make it a good model to work with.
The dynamics of the Vasicek model are describe below.</p>
<p>In this model, the parameters are constants, and the random motion is generated by the Q measure Brownian motion .
An important property of the Vasicek model is that the interest rate is mean reverting to , and the tendency to revert is controlled by .
Also, this process is a diffusion process, hence Markovian, which will lead to some nice closed form formulas.
Finally, the future value of the interest rate is normally distributed with the distribution .</p>
Monte Carlo Engine : How to find the optimised wager for next bet, following a recent loss. (Python)
2014-04-28T08:41:49-07:00alexander bakerhttp://code.activestate.com/recipes/users/4166679/http://code.activestate.com/recipes/578869-monte-carlo-engine-how-to-find-the-optimised-wager/
<p style="color: grey">
Python
recipe 578869
by <a href="/recipes/users/4166679/">alexander baker</a>
(<a href="/recipes/tags/finance/">finance</a>, <a href="/recipes/tags/optimise/">optimise</a>, <a href="/recipes/tags/python/">python</a>, <a href="/recipes/tags/tree/">tree</a>).
</p>
<p>Simple Engine to help understand how to best wager your next bet, given that you just made a loss. The engine uses the modified Powell method to optimise the weight to apply to your wager on the next position.</p>
<p>{'My Simple Heads And Tails Model': <BackTest.Simulation object at 0x0583D410>}
participants [100] survivors [90.0%] losers [10.0%] weight [0.073858]
solving for r: [ 0.07385806]
simulations 100, trials 100 starting pot 1000
calling initialise
{'My Simple Heads And Tails Model': <BackTest.Simulation object at 0x0583D430>}
participants [100] survivors [86.0%] losers [14.0%] weight [0.072220]
solving for r: [ 0.07221954]
Optimization terminated successfully.
Current function value: 8.000000
Iterations: 2
Function evaluations: 30
highest survivability following loss, multiply wager by 7.2949 %</p>
<h5 id="">.</h5>
<p>Ran 2 tests in 25.545s</p>
<p>OK</p>