Popular recipes tagged "database" but not "smtp", "random" and "pdf"
ActiveState Code Recipes
	DBF reader and writer -- selective fields and nullreplace (Python)
Python
recipe 580696

by Tomas Nordin

(database).

This fork assumes a desire for limited selection of field names. With
huge files this might be necessary on some machines.

Also, assuming that the meaning of null in a dbf file means zero might
be a mistake, so the fork adds an argument nullreplace as way to
choose what to replace null with. Null is sometimes used to mean
missing value. This change is decoupled from the selective names
feature.
	Publish Firebird SQL data to PDF with xtopdf (Python)
Python
recipe 579131

by Vasudev Ram

(database, firebird, pdfwriter, python, sql, xtopdf).

This recipe shows how to publish data from the Firebird RDBMS to PDF, using the xtopdf toolkit and the fbd Python driver for Firebird. Firebird is a cross-platform, open source RDBMS based on the former Interbase RDBMS from Borland, which they used to bundle with some of their developmemt tools, such as Borland C++ and Borland Delphi.

The recipe reads data from a Firebird table, using the fbd Python driver for Firebird, and writes it to PDF, using the xtopdf toolkit. See:

http://jugad2.blogspot.in/p/xtopdf-pdf-creation-library.html

for information on xtopdf.

It assumes that a Firebird database called test.fdb exists under /temp/firebird (C:\temp\firebird, really - the test was done on Windows), and that it has a contacts table with the structure shown in the code of the recipe.

More details and sample output are here:

http://jugad2.blogspot.in/2014/01/by-vasudev-ram-pdf-firebird-is-cross.html
	Python SQLSMO - Threading Example (Python)
Python
recipe 579023

by Jorge Besada

(database, python, smo, sql, sqlsmo, threading).

This is an example of the use of the SQLSMO module. Using a csv file DBLIST_ACTIONS.csv with list of databases where you can launch multiple different database operations in parallel

Some lines of the configuration file DBLIST_ACTIONS.csv used shown below:
SERVERNAME,DBNAME1,SOURCESERVER,DATAFOLDER,LOGFOLDER,DBNAME2,ACTIONS,ENABLED
(local)\sql2014,AdventureWorks2012,C:\SQL2014\BACKUPS,C:\SQL2014\DATA,C:\SQL2014\LOG,AdventureWorks_COPY1,RESTOREDBS1.CFG,Y
(local)\sql2014,AdventureWorks2012,C:\SQL2014\BACKUPS,C:\SQL2014\DATA,C:\SQL2014\LOG,AdventureWorks_COPY2,RESTOREDBS1.CFG,Y
(local)\sql2014,AdventureWorks2012,C:\SQL2014\BACKUPS,C:\SQL2014\DATA,C:\SQL2014\LOG,AdventureWorks_COPY3,RESTOREDBS1.CFG,Y
(local)\sql2014,AdventureWorks2012,C:\SQL2014\BACKUPS,C:\SQL2014\DATA,C:\SQL2014\LOG,AdventureWorks_COPY4,RESTOREDBS1.CFG,

Where:
SERVERNAME: server where the database to act upon resides

DBNAME1: source database

DBNAME2: destination database (may be different from source when we restore a copy with a different name)

SOURCESERVER: this is the network (or local) folder where backups are placed

DATAFOLDER: folder for data files

LOGFOLDER: folder for log files

ACTIONS: this is the name of the configuration file (.CFG) with the list of actions

ENABLED: a Y value here will mean we want to process the line

For each line (database) you specify a configuration file (in this case RESTOREDBS1.CFG), see sample below:
(one line for each, no blank lines)

RESTORE DATABASE

SET DBOWNER: sa

SYNC LOGINS

SET SIMPLE MODE

SHRINK LOG

The program will process each line in the source CSV file and for each one it will perform the set of operations described in the configuration file. This system is being used in my workplace with different configuration files for different databases (there are configuration files for restores, specific restores with more actions, backups, etc, not included here for brevity).

Every time you do a database task you just add a line in the DBLIST_ACTIONS.CSV and create (if needed) a configuration file). If you are going to actually use it include a "Y" in the ENABLED column
Note: every line action in the configuration file must have been implemented in the function ActionParsing as one the entries in the big if statement.

Special features:
You can specify at the start of the program if you want to really execute or not. You may want to do first a trial run setting NOEXECUTE_OPTION = 1 (instead of the default of 0). In this case the program will run and create the SQL script of the operations, not executing them.
Note: it has been implemented in the restores so far, will add it to the other options later.

Threading: by default it will run as many threads as lines in the DBLIST_ACTIONS.CSV file. But you can change this option by setting a value to THREAD_POOL different than 0.
	Python ADO Database Interface for MS SQL Server - Python 3 version 1.0 (Python)
Python
recipe 578913

by Jorge Besada

(ado, database).

Revision 3.

This DBI implements the Cursor and Connection objects. You can create connections, cursors, do fetchone, fetchall. It uses ADO. Will add more features later
	Python SQLSMO (Python)
Python
recipe 578977

by Jorge Besada

(database, python, smo, sql, sqlsmo).

Revision 15.

I needed a Python library equivalent to the SQL Server Management Objects (SMO) and did not find it, so I created my own version. It does not follow the standard SMO objects names. So far it has a set of basic functionality: to make backups, restores with move, sync logins for restored databases, check disk space. I included a good sized testing harness to get you going. This version uses sqlcmd for connectivity. I use this SQLSMO library as an imported module in several of my Python applications.
It has been tested with SQL 2012 and SQL 2014, it should function with versions down to 2005.
	Printing list of ODBC data sources with pyodbc module (Python)
Python
recipe 578815

by Michal Niklas

(database, odbc, sql).

I have similar recipe but with odbc module: http://code.activestate.com/recipes/578782-printing-list-of-odbc-data-sources/
	Python Database Interface for MS SQL Server - Python 3 version (Python)
Python
recipe 578906

by Jorge Besada

(database).

This DBI implements the Cursor and Connection objects. It is functional: you can create connections, cursors, do fetchone, fetchall, get rowcount, etc. It uses osql or sqlcmd instead of ODBC or ADO. There is a good sized section with examples to get you started.
	Printing list of ODBC data sources (Python)
Python
recipe 578782

by Michal Niklas

(database, odbc, sql).

This simple code shows ODBC data sources. It uses odbc module.
	A Phone Book GUI Built in wxPython Connected To Database Using Data Grid View (Python)
Python
recipe 578676

by toufic zaarour

(database, datagridview, graphical, gui, interface).

this GUI as simple as it is explains some basic but important graphical database interfacing; "Add", "Edit","Delete","Search" and few others along with a data grid view. in order to work create an sqlite3 database as follows:

data table : Phone,
column 1 : ID,
column 2 : name,
column 3 : surname,
column 4 : telephone.

save the sqlite3 file as file.db in a folder called Data and place it in the same directory as your python script.

if you want to create the sqlite3 database graphically use my previous post : http://code.activestate.com/recipes/578665-a-wxpython-gui-to-create-sqlite3-databases/

Also there is more: I did not use auto-number for 'id' because I also wanted to include in the code a renumbering script.

I am pleased to receive all the suggestions and improvements on this site or to my e-mail directly if this is convenient to you.

note: if you don't like the database table name, and columns name create your own but make sure to change them in the code as well! in the end life is great! remember that!
	List MySql databases in a Gtk.TreeView (Python)
Python
recipe 578774

by Anonimista

(database, gtk, gui, mysqldb, user_interface).

List MySql databases in a Gtk.TreeView
	Save and restore SHA-512 internal state (Python)
Python
recipe 578479

by Dima Tisnek

(database, inner, pickle, restore, sha512, state).

If you have a very long input to hash, you may want to save your progress.

CPython doesn't normally let you, but it's easy to hack around via ctypes
	sql+ the SQL*Plus killer (Python)
Python
recipe 578490

by jo

(database, db, db_client, sql, sql_client).

Revision 3.

This recipe is an emulator of the Oracle SQL*Plus, but it does things in a more friendly way ;).

If you need a client to access your Oracle but you don't like SQL*Plus, try this one.

This recipe was inspired by James Thiele's Console built with Cmd object recipe.

It provides a 'help' facility and supplies command completion when you hit the 'tab' key.

In addition you can use command line editing and history keys.

Here are the commands that you can use:

==
Documented commands (type help <topic>):
==
constraints edit help input sequences shell
db exit history output set tables
desc foreigns index quit settings triggers

You can edit the queries using 'vim' or any other editor.

The command 'output' can redirect output to a file and command 'input' can input commands from a file.

There's paginated output.

The command 'shell' or '!' allow you to perform operating system commands.

You can add commands by defining methods with names of the form 'do_xxx()' where 'xxx' is
the name of the command you wish to add.

There is a configuration file (.sql+) where you need to enter the dburi, editor name and other
settings.
	Profile Manager (Cave Story) (Python)
Python
recipe 578368

by Stephen Chappell

(database, manager, profile).

If you have ever played a game that only had one save slot and wanted to be able to manage profiles, the following code written for Cave Story may be of use to you. The recipe provides a starting point for how one might go about writing a profile manager for such a program that runs through a command interface.
	Saving snippets to SQLite3 database (Python)
Python
recipe 578285

by p@ntut$

(database).

Revision 5.

Save your snippets/codes to sqlite3 database, search, edit, and delete.
	Read tabular data from Excel spreadsheets the fast and easy way (Python)
Python
recipe 578283

by wei.Liu

(database).

Sometimes you get an Excel spreadsheet (say, from the marketing departement) and you want to read tabular data from it (i.e. a line with column headers and lines of data). There are many ways to do this (including ODBC + mxODBC), but the easiest way I've found is this one : provide a file name and a sheet name, and read the data !
	Inner Join (Python)
Python
recipe 577937

by Raymond Hettinger

(database, join, sql).

Revision 2.

Implemented an SQL style INNER JOIN for two lists of tuples to be joined on a common field.
	Simple Knowlegde Database (Python)
Python
recipe 577975

by Thomas Lehmann

(antagonisms, database, knowledge, opposites, relationships).

Revision 2.

What's the idea?

The idea is to be able to ask more successful questions than data provided.
To have a kind of simple database

How is this done?

A releationship is always though as a from of older/younger or bigger/smaller. You have to define those opposite meanings by calling 'defineAntagonism'
After this you can define a relationship by calling 'defineRelationship' using one of the opposite meanings and two ... I say names (can be persons or objects)
When you define that somebody/someting is bigger than somebody/something else then you implicitly provide two information (bigger <-> smaller)
Also when defining - more commonly explained - that A > B and B > C then also A > C and C < A.
That's the main logic implemented by this python code.

Special notes

We have to avoid inconsistent data; when it is defined that A > B then you are not allowed to say that B > A.
We have to sort relations because they build up - I name it like this - a dependency chain. When a query checks for A > C but A > B and B > C is defined only we need an order for searching.
	Simple curses based MySQL 'top' (Python)
Python
recipe 577936

by Mike 'Fuzzy' Partin

(curses, database, mysql, time).

Revision 3.

This is little more than a modification of my previous recipe, however, I found it useful so I thought I would post it in the hopes that someone else would as well. There is color (BOLD white really) designation for 'Query' states vs others like 'Sleep'.
	Rudimentary Database Engine (Python)
Python
recipe 577825

by Stephen Chappell

(database, engine, example, experiment).

Revision 2.

This module was written for self-academic purposes in an attempt to understand databases better. Just as in college where students are required to reinvent "wheels" like linked lists, trees, binary searches, et cetera, developing this program helped me understand some of the things that goes on behind the scenes in a database while also helping to learn what the desired output of each operation should be. The code in this module provides support for running a simple database engine that runs completely in memory and allows usage of various concepts available in a structured query language to get and set data that may be saved to file.
	Multiprocessing import wrapper (Python)
Python
recipe 577856

by Matt Keranen

(database, etl, import, multiprocessing).

Revision 2.

A script used to launch multiple import scripts using the multiprocessing module. Developed to parallelize loading of multiple log files into a database for aggregate analysis

