Popular recipes not tagged "mupdf" and "tkinter"
ActiveState Code Recipes
	Uno (Text-Based) (Python)
Python
recipe 580811

by Brandon Martin

(artificial_intelligence, cards, game, text_game, uno).

A text based recreation of the classic card game featuring functional AIs to play with. Some rules have been modified. User interface is text based, non-curses, using only simple python commands to draw it.
	The Game of Tic Tac Toe in Python (Python)
Python
recipe 578816

by Captain DeadBones

(beginner, game, python).

I thought this is a fun game to program. Easy to program and can teach a lot.

Captain DeadBones
	Convert Microsot Excel (XLSX) to PDF with Python and xtopdf (Python)
Python
recipe 579128

by Vasudev Ram

(excel, formats, openpyxl, pdf, python, xlsx, xtopdf).

This recipe shows how the basics of to convert the text data in a Microsoft Excel file (XLSX format) to PDF (Portable Document Format). It uses openpyxl to read the XLSX file and xtopdf to generate the PDF file.
	Implementing function-based callbacks in Python (Python)
Python
recipe 580787

by Vasudev Ram

(callback, function, functions, python, techniques).

This recipe shows a simple way of implementing callbacks in Python. There are a few ways this can be done. The way shown here uses a simple function-based approach.

In a nutshell, a callback can be informally described like this: function a calls function b, and wants to make b run a specific independent chunk of code at some point during b's execution. We want to be able to vary which chunk of code gets called in different calls to b, so it cannot be hard-coded inside b. So function a passes another function, c, to b, as one argument, and b uses that parameter c to call the functionality that a wants b to call. (Function b may pass some parameters to the function represented by c, when it calls it. These could be either internally generated, passed from a, or a combination of both). So, by changing the value of the function c that gets passed to b (on different calls to b), a can change what chunk of code b calls.

More details and full code, description and output here:

https://jugad2.blogspot.in/2017/04/implementing-and-using-callbacks-in.html
	Implementing class-based callbacks in Python (Python)
Python
recipe 580788

by Vasudev Ram

(callbacks, classes, functions, methods, objects, programming, python).

This is a follow-on to this recently posted recipe:

Implementing function-based callbacks in Python:
https://code.activestate.com/recipes/580787-implementing-function-based-callbacks-in-python/?in=user-4173351

This new recipe shows how to create and use callbacks in Python, using classes with methods, instead of plain functions, as was done in the recipe linked above. All other points such as reasons and benefits for using callbacks, are more or less the same as mentioned in the previous recipe, except that class instances can carry state around, so to that extent, the two approaches are different.

https://jugad2.blogspot.in/2017/04/python-callbacks-using-classes-and.html
	How to create a simple PDF Pie Chart using fitz / PyMuPDF (Python)
Python
recipe 580810

by Jorj X. McKie

(fitz, pdf_generation).

PyMuPDF now supports drawing pie charts on a PDF page.

Important parameters for the function are center of the circle, one of the two arc's end points and the angle of the circular sector. The function will draw the pie piece (in a variety of options) and return the arc's calculated other end point for any subsequent processing.

This example creates a chart of the parliament seat distribution for political parties in the current German Bundestag.
	Equally-spaced numbers (linspace) (Python)
Python
recipe 579000

by Andrew Barnert

(float, linspace, range, spread).

An equivalent of numpy.linspace, but as a pure-Python lazy sequence.

Like NumPy's linspace, but unlike the spread and frange recipes listed here, the num argument specifies the number of values, not the number of intervals, and the range is closed, not half-open.

Although this is primarily designed for floats, it will work for Fraction, Decimal, NumPy arrays (although this would be silly) and even datetime values.

This recipe can also serve as an example for creating lazy sequences.

See the discussion below for caveats.
	Shoelace Formula for polygonal area (Python)
Python
recipe 580812

by Paddy McCarthy

(2d, area).

Copied, by author from "Paddy3118 Go deh!: Python investigation of the Shoelace Formula for polygonal area http://paddy3118.blogspot.com/2017/07/python-investigation-of-shoelace.html#ixzz4n43Dqhaa " Where there is more meat on the bone (under a different license though).
	groupby() For Unsorted Input (Python)
Python
recipe 580800

by Alfe

(algorithm, datastructures, generators, grouping, lazy).

We all know the groupby() which is available in the itertools standard module. This one yields groups of consecutive elements in the input which are meant to be together in one group. For non-consecutive elements this will yield more than one group for the same key.

So effectively, groupby() only reformats a flat list into bunches of elements from that list without reordering anything. In practice this means that for input sorted by key this works perfect, but for unsorted input it might yield several groups for the same key (with groups for other keys in between). Typically needed, though, is a grouping with reordering if necessary.

I implemented a likewise lazy function (yielding generators) which also accepts ungrouped input.
	Simulating an unless (reverse if) statement in Python (Python)
Python
recipe 580758

by Vasudev Ram

(features, if, perl, programming, python, trick).

This recipe shows how to simulate an unless statement (a sort of reverse if, like Perl has), in Python. It is just for fun and as an experiment, not meant for real use, because the effect of unless can easily be got by negating the sense of the condition in an if statement.

More details and output here:

https://jugad2.blogspot.in/2017/02/perl-like-unless-reverse-if-feature-in.html
	Variable Abbreviations (Python)
Python
recipe 580807

by Alfe

(abbreviations, contextmanager, variables, with).

One sometimes has nice long speaking names vor variables, maybe things like buildingList[foundIndex].height, but would like to address these in a shorter fashion to be used within a formula or similar where lots of longs names tend to confuse any reader trying to understand the formula. Physicists use one-letter names for a reason.

For this I wrote a small context provider which allows using short names instead of long ones:

with Abbr(h=buildingList[foundIndex].height, g=gravitationalConstant):
 fallTime = sqrt(2 * h / g)
 endSpeed = sqrt(2 * h * g)
print("Fall time:", fallTime)
print("End speed:", endSpeed)

For longer formulas this can reduce ugly multi-line expressions to clearly readable one-liners.

One could use this:

h = buildingList[foundIndex].height
g = gravitationalConstant
fallTime = sqrt(2 * h / g)
endSpeed = sqrt(2 * h * g)
del g, h
print("Fall time:", fallTime)
print("End speed:", endSpeed)

to achieve the same result, but

it would not look as clean and
the context provider solves the typical issues like cleanup on exception etc.

Just using local variables without cleanup (like above without the del statement) also is an option of course, but that would clutter the variable name space unnecessarily.

CAVEATS: The implementation of Abbr() is a hack. If used as intended and described here, it should work just fine, though. But the hackish nature forces me to mention some things: Since at compile time the compiler decides that the h and g in the example must be global variables (because they aren't assigned in the function), it produces byte code accessing global variables. The context provider changes the global variable structure to fill the needs. (Overridden already existing global variables of the same name get restored properly at context exit.) This means some things:

One cannot have a local variable of the same name in the frame surrounding the context manager.
Existing global variables are changed during the time of the context manager; so using names like sys or os for abbreviations might be a bad idea due to side-effects.
	Guard against an exception in the wrong place (Python)
Python
recipe 580808

by Steven D'Aprano

(context, exception, guard, manager).

Revision 2.

Sometimes exception handling can obscure bugs unless you guard against a particular exception occurring in a certain place. One example is that accidentally raising StopIteration inside a generator will halt the generator instead of displaying a traceback. That was solved by PEP 479, which automatically has such StopIteration exceptions change to RuntimeError. See the discussion below for further examples.

Here is a class which can be used as either a decorator or context manager for guarding against the given exceptions. It takes an exception (or a tuple of exceptions) as argument, and if the wrapped code raises that exception, it is re-raised as another exception type (by default RuntimeError).

For example:

try:
 with exception_guard(ZeroDivisionError):
 1/0 # raises ZeroDivisionError
except RuntimeError:
 print ('ZeroDivisionError replaced by RuntimeError')

@exception_guard(KeyError)
def demo():
 return {}['key'] # raises KeyError

try:
 demo()
except RuntimeError:
 print ('KeyError replaced by RuntimeError')
	Unit Testing Nested Functions (Python)
Python
recipe 580716

by Alfe

(introspection, nested, unittests).

Revision 3.

Python allows the declaration of nested functions. These are typically hard to unit test because using just the normal ways of calling they cannot be called from outside their surrounding function. So they cannot be considered a clearly separated unit and thus cannot be unit tested.

This is a drawback of using them, so many developers (especially the ones deep into test driven development who strive to have a high unit test coverage) tend to avoid them in favor for standalone functions which can be called from the unit tests without any hassle.

But not all solutions with nested functions can be written as elegant with standalone functions. Nested functions are powerful insofar that they can access the local variables of the surrounding function without any need to pass them into the nested function, thus the code can in many cases stay neat and tidy while using a standalone function instead might raise the need to pass the complete context in form of a bunch of parameters. Also, using nested functions makes their local usage clear to any reader and keeps the name space tight.

But at least in the standard CPython (i. e. not necessarily in Jython, etc.) the implementation of functions (and methods) allows to find the nested function's code, wrap it properly to give it its needed context and then call it from the outside. I wrote a small module which helps doing exactly this.
	Unix tee-like functionality via a Python class (Python)
Python
recipe 580767

by Vasudev Ram

(cli, command, commandline, linux, python, tee, unix, utilities, windows).

The Unix tee commmand, when used in a command pipeline, allows you to capture the output of the preceding command to a file or files, while still sending it on to standard output (stdout) for further processing via other commands in a pipeline, or to print it, etc.

This recipe shows how to implement simple tee-like functionality via a Python class. I do not aim to exactly replicate the functionality of the Unix tee, only something similar.

More details and sample output here:

https://jugad2.blogspot.in/2017/03/a-python-class-like-unix-tee-command.html
	Interactive Mandelbrot Fractal Using HTML5 Canvas (JavaScript)
JavaScript
recipe 580804

by FB36

(canvas, fractal, graphics, math).

Interactive Mandelbrot Fractal Using HTML5 Canvas.

(Download and save as html file and open it.)

(Tested only using Firefox browser.)
	[xtopdf] Publish Delimiter-Separated Values (DSV data) to PDF (Python)
Python
recipe 580736

by Vasudev Ram

(commandline, csv, data, files, formats, pdf, pdf_generation, python, tsv, utilities, xtopdf).

This recipe shows how to publish delimiter-separated values (a commonly used tabular data format) to PDF, using the xtopdf toolkit for PDF creation. It lets the user specify the delimiter via one of two command-line options - an ASCII code or an ASCII character. As Unix filters tend to do, it can operate either on standard input or on input filenames given as command-line arguments. In the case of multiple inputs via files, each input goes to a separate PDF output file.
	Reversi Othello (Python)
Python
recipe 580698

by FB36

(ai, algorithm, algorithms, game, games).

Reversi/Othello Board Game using Minimax, Alpha-Beta Pruning, Negamax, Negascout algorithms.
	A simple text file pager in Python (Python)
Python
recipe 580755

by Vasudev Ram

(command, commandline, pagination, paging, python, text, utilities, windows).

This recipe shows how to create a simple text file pager in Python. It allows you to view text content a page at a time (with a user-definable number of lines per page). Like standard Unix utilities, it can either take a text file name as a command-line argument, or can read the text from its standard input, which can be redirected to come from a file, or to come from a pipe. The recipe is for Windows only, though, since it uses the msvcrt.getch() function, which is Windows-specific. However, the recipe can be modified to work on Unix by using things like tty, curses, termios, cbreak, etc.

More details here:

https://jugad2.blogspot.in/2017/02/tp-simple-text-pager-in-python.html
	Convert wildcard text files to PDF with xtopdf (e.g. report*.txt) (Python)
Python
recipe 580727

by Vasudev Ram

(conversion, files, globbing, patterns, pdf, pdfwriter, pdf_generation, text_processing, wildcard, xtopdf).

This recipe shows how to convert all text files matching a filename wildcard to PDF, using the xtopdf PDF creation toolkit. For example, if you specify report.txt as the wildcard, all files in the current directory that match report.txt, will be converted to PDF, each in a separate PDF file. The original text files are not changed.

Here is a guide to installing and using xtopdf:

http://jugad2.blogspot.in/2012/07/guide-to-installing-and-using-xtopdf.html

More details on running the program, and sample output, are available here:

http://jugad2.blogspot.in/2016/12/xtopdf-wildcard-text-files-to-pdf-with.html
	Get disk partition information with psutil (cross-platform) (Python)
Python
recipe 580737

by Vasudev Ram

(device, disk, file_system, psutil, python, sysadmin, system).

This is a recipe that shows how to easily get disk partition information, in a cross-platform manner (for the supported OSes), from your computer's operating system, using the psutil library for Python.

