Latest recipes tagged "tkinter" but not "mupdf", "link" and "calculator"
ActiveState Code Recipes
	Tkinter frame with different border sizes (Python)
Python
recipe 580798

by Miguel Martínez López

(border, size, tkinter).

This trick shows how to create a bordered frame with different border size in each side.
	Scrolled Frame V2 (Python)
Python
recipe 580797

by Miguel Martínez López

(frame, scrolling, tkinter).

Revision 4.

This is another version of scrolled frame. It doesn't use Canvas. Instead it does the trick using place geometry manager.

Based on these codes:

https://github.com/alejandroautalan/pygubu/blob/master/pygubu/widgets/tkscrolledframe.py
http://wiki.tcl.tk/9223

This is my other version of scrolled frame:

https://code.activestate.com/recipes/580640-scrolling-frame-with-mouse-wheel-support/
	bind all tkinter "bug" (Python)
Python
recipe 580795

by Miguel Martínez López

(all, bind, binding, tkinter).

Revision 3.

This recipes tries to solve the problem of bind_all and unbind_all for tkinter.

When a callback is registered using bind_all method and later it's unregistered using unbind_all, all the callbacks are deleted for the "all" tag event. This makes difficult to register and unregister only one callback at a time. This recipes tries to solve this problem.

Observe the difference between the code below and the recipe. With the code below, when the user clicks nothing happens. But with my recipe it's possible to bind and unbind specific callbacks.

try:
 from Tkinter import Tk, Frame
except ImportError:
 from tkinter import Tk, Frame

root = Tk()
f = Frame(root, width= 300, height=300)
f.pack()

def callback1(event):
 print("callback1")

def callback2(event):
 print("callback2")

def callback3(event):
 print("callback3")

root.bind_all("<1>", callback1, add="+")
f.bind_all("<1>", callback2, add="+")
f.bind_all("<1>", callback3, add="+")

f.unbind_all("<1>")

root.mainloop()
	Simple multicolumn listbox for tkinter (Python)
Python
recipe 580794

by Miguel Martínez López

(listbox, multicolumn, table, tkinter).

This recipe makes easy to work a treeview widget like a table.

It has several options for styling:

heading_anchor
heading_font
heading_background
heading_foreground
cell_anchor
cell_background
cell_foreground
cell_font
cell_pady
height
padding
adjust_heading_to_content
stripped_rows
headers
selection_background
selection_foreground
field_background

The "command" parameter is a callback and its called each time a row is selected.
	Tkinter table with scrollbars (Python)
Python
recipe 580793

by Miguel Martínez López

(scrollbars, table, tkinter).

Revision 13.

I created here a tkinter table with scrollbar support. I use one of my other recipes for the mousewheel support and scrolling:

https://code.activestate.com/recipes/580640-scrolling-frame-with-mouse-wheel-support
	Tkinter table (Python)
Python
recipe 580786

by Miguel Martínez López

(table, tkinter).

Revision 24.

Table of data for tkinter.

Here there is an improved vesion with vertical scrollbar support:

https://code.activestate.com/recipes/580793-tkinter-table-with-scrollbars
	Metro Listbox (Python)
Python
recipe 580785

by Miguel Martínez López

(listbox, metro, tkinter).

Revision 2.

I provide an alternative listbox for tkinter.

Using this trick you can add horizontal and vertical padding to every item and also a width.
	Stacked frame for Tkinter (Python)
Python
recipe 580784

by Miguel Martínez López

(animation, frame, stacked, tkinter).

Revision 2.

I provide here a stacked frame widget with possibility to use animation for the transition.
	Metro Checkbuttons and Radiobuttons (Python)
Python
recipe 580783

by Miguel Martínez López

(checkbutton, radiobutton, tkinter).

Revision 2.

This recipe shows how to create custom checkbuttons and radiobuttons
	Image background for tkinter (Python)
Python
recipe 580782

by Miguel Martínez López

(background, tkinter).

Revision 3.

This is only a proof of concept.

In my first example, PIL is required. I use PIL also to draw the text over the background. I use the place geometry manager to position the entry.

In my second example, I use a canvas widget to draw text over image. I also use the canvas to create other widgets over the background.
	Metro Accordion for Tkinter (Python)
Python
recipe 580781

by Miguel Martínez López

(accordion, metro, tkinter, widget).

Revision 5.

I provide an animation abstract object to make easy the animation of the accordion.
	Metro Dialog for Tkinter (Python)
Python
recipe 580780

by Miguel Martínez López

(dialog, metro, tkinter).

Revision 5.

I provide here a metro style dialog.

It's possible to use a different style of colors subclassing the class Metro_Dialog or providing the corresponding arguments during class initialization.

For more metro widgets see here:

https://code.activestate.com/recipes/580729-metro-ui-tkinter
	tkinter custom fonts (Python)
Python
recipe 580778

by Miguel Martínez López

(font, tkinter).

Revision 2.

One Windows the best solution is to use the trick explained here:

http://stackoverflow.com/a/30631309

Another possibility is to use PIL. creating an image with the text and a specific font.

I provide 2 classes: CustomFont_Label and CustomFont_Message.

CustomFont_Message displays multilines but requires the width parameter.
	Metro Spinner for Tkinter (Python)
Python
recipe 580777

by Miguel Martínez López

(canvas, image, pil, rotation, spinner, tkinter).

I create a rotating image class RotatingIcon inspired and based on this code:

http://stackoverflow.com/questions/15736530/python-tkinter-rotate-image-animation

Features:

Methods to stop and start the animation
The animation automically stops when the window is not mapped, and the animation continues when the window is mapped again
Time setting to control the speed of the animation
All the formats accepted for PIL could be used. XBM format is automatically converted to Tk Bitmap. The advantage of Bitmats is the possibility to change the color of the foreground.

I added 6 different styles of spinners with different sizes.

I used fontawesome.io for the icon generation.

For more metro widgets see here:

https://code.activestate.com/recipes/580729-metro-ui-tkinter/
	Tkinter buddies or shorcuts (Python)
Python
recipe 580775

by Miguel Martínez López

(accelerator, buddies, buddy, shorcut, tkinter).

Revision 2.

I provide two convenience functions to create shorcuts. create_buddy creates a buddy for the provided label.A buddy establish a connection between a label and a related widget. It provides a quick keyboard shorcut to focus its partner widget. (Buddy is a terminology used in PyQt).

create_shortcut_to_button creates a shorcut to invoke a button.

I bind to toplevel containing the widget. This way, when the dialog is closed all the bindings disappear.

All shorcuts are of this form: Alt + letter

Buddies and shorcuts enriches the user experience providing new ways to navigate and interact quickly with the application.
	Tkinter search box (Python)
Python
recipe 580773

by Miguel Martínez López

(entry, search, searchbox, tkinter).

Revision 9.

Instead of using two colors for active background and normal background, I use only one color and opacity parameter.

I trigger the feeling of a button using different colors when the mouse is and isn't over. Many modern HTML search boxes uses the same approach.

Command function receives text of entry box when button is pressed.
	File browser for tkinter using idle GUI library (Python)
Python
recipe 580772

by Miguel Martínez López

(browser, file, idlelib, tkinter).

Idle is installed by default on windows.

For Ubuntu, Linux Mint and Debian run:

 sudo apt-get install idle-python2.7

A tree structure is drawn on a Tkinter Canvas object. A tree item is an object with an icon and a text. The item maybe be expandable and/or editable. A tree item has two kind of icons: A normal icon and an icon when the item is selected. To create the tree structure, it's necessary to create a link between tree items, using a parent-child relationship.

The canvas is built using a idlelib.TreeWidget.ScrolledCanvas class. The frame attribute of this object contains a Frame Tkinter widget prepared for scrolling. This frame allocates a Tkinter Canvas and Tkinter Scrollbars. This is the signature:

 ScrolledCanvas(master, **options_for_the_tkinter_canvas)

It accepts exactly the same arguments than a Canvas widget.

A tree item should be a subclass of idlelib.TreeWidget.TreeItem.

The parent-child relationship between tree items is established using the idlelib.TreeWidget.TreeNode class.

This is the signature for TreeNode(canvas, parent, item):

canvas should be a ScrolledCanvas instance.
parent should be the parent item. Leave that to None to create a root node.
item should be the child item

FileTreeItem is a type of TreeItem. The only argument of a file tree item is a path.

Here there is an example of a custom tree item:

https://code.activestate.com/recipes/579077-bookmarks-browser-for-firefox/

To create your own tree items, it's required to subclass TreeItem. These are the methods that should be overrided:

GetText: It should return the text string to display.
GetLabelText: It should return label text string to display in front of text (Optional).
IsExpandable: It should return a boolean indicating whether the istem is expandable
IsEditable: It should return a boolean indicating whether the item's text may be edited.
SetText: Get the text to change if the item is is editable
GetIconName: Return name of icon to be displayed normally (Icons should be included in ICONDIR directory)
GetSelectedIconName: Return name of icon to be displayed when selected (Icons should be included in ICONDIR directory).
GetSubList: It should return a list of child items (Optional. If not defined, the element is not expandable)
OnDoubleClick: Called on a double-click on the item. (Optional)

Icons should be included in "Icons" subdirectory of path to idlelib library. If you want to use other path, just change ICONDIR variable to path to your icons:

 import idlelib
 idlelib.ICONDIR = "Your path to your icons"

Run this to find the path to idlelib module:

 python -c "import idlelib; print(idlelib.__file__)"
	Tkinter file autocomplete entry (Python)
Python
recipe 580771

by Miguel Martínez López

(autocomplete, entry, file, tkinter).

Revision 9.

I define a "File_Entry" widget to make more easier to the final user to write and search for a path. I am using my own version of combobox widget:

https://code.activestate.com/recipes/580770-combobox-autocomplete/
	Combobox Autocomplete (Python)
Python
recipe 580770

by Miguel Martínez López

(autocomplete, combobox, entry, tkinter).

Revision 11.

This is my own version of combobox autocomplete. The user can customize the matching function setting whether he wants to ignore case or whether the matching function should only match from the beginning of the string. The other possibility is to provide your own "auto complete function". The complete function returns all the found strings matching the text in the entry box.

It's also possible to customize the height of listbox and whether to use horizontal or vertical scrollbars.

Use arrows or Contro+n, Control+p to move selection on listbox.

This is a practical application of the combobox widget:

https://code.activestate.com/recipes/580771-tkinter-file-autocomplete-entry/
	Tkinter Desktop Notifications or Popups (Python)
Python
recipe 580769

by Miguel Martínez López

(alert, easing, notification, popup, tkinter).

Revision 2.

This trick requires pytweening:

https://pypi.python.org/pypi/PyTweening

Install writing:

 pip install pytweening

It shows a notification on one corner of the screen,and gradually the notification disappears using an easing function. By default, it uses a linear easing function.

The class Notification_Manager has the method create_notification, but it also has some convenient methods to create easily some kind of notifications: success, alert, info, warning.

