Popular recipes tagged "files" but not "mupdf"
ActiveState Code Recipes
	[xtopdf] Publish Delimiter-Separated Values (DSV data) to PDF (Python)
Python
recipe 580736

by Vasudev Ram

(commandline, csv, data, files, formats, pdf, pdf_generation, python, tsv, utilities, xtopdf).

This recipe shows how to publish delimiter-separated values (a commonly used tabular data format) to PDF, using the xtopdf toolkit for PDF creation. It lets the user specify the delimiter via one of two command-line options - an ASCII code or an ASCII character. As Unix filters tend to do, it can operate either on standard input or on input filenames given as command-line arguments. In the case of multiple inputs via files, each input goes to a separate PDF output file.
	Convert wildcard text files to PDF with xtopdf (e.g. report*.txt) (Python)
Python
recipe 580727

by Vasudev Ram

(conversion, files, globbing, patterns, pdf, pdfwriter, pdf_generation, text_processing, wildcard, xtopdf).

This recipe shows how to convert all text files matching a filename wildcard to PDF, using the xtopdf PDF creation toolkit. For example, if you specify report.txt as the wildcard, all files in the current directory that match report.txt, will be converted to PDF, each in a separate PDF file. The original text files are not changed.

Here is a guide to installing and using xtopdf:

http://jugad2.blogspot.in/2012/07/guide-to-installing-and-using-xtopdf.html

More details on running the program, and sample output, are available here:

http://jugad2.blogspot.in/2016/12/xtopdf-wildcard-text-files-to-pdf-with.html
	Batch conversion of text files to PDF with fileinput and xtopdf (Python)
Python
recipe 580715

by Vasudev Ram

(batch, batchmode, conversion, files, pdf, pdfwriter, python, text, text_processing, utilities, xtopdf).

This recipe shows how to do a batch conversion of the content of multiple text files into a single PDF file, with a) an automatic page break after the content of each text file (in the PDF output), b) page numbering, and c) a header and footer on each page.

It uses the fileinput module (part of the Python standard library), and xtopdf, a Python library for conversion of other formats to PDF.

xtopdf is available here: https://bitbucket.org/vasudevram/xtopdf

and a guide to installing and using xtopdf is here:

http://jugad2.blogspot.in/2012/07/guide-to-installing-and-using-xtopdf.html

Here is a sample run of the program:

python BTTP123.pdf text1.txt text2.txt text3.txt

This will read the content from the three text files specified and write it into the PDF file specified, neatly formatted.
	Read CSV with D and write it to PDF with Python (Python)
Python
recipe 580710

by Vasudev Ram

(conversion, csv, data, files, formats, pdf, pdf_generation, xtopdf).

This recipe shows how to read data from a CSV file with a D program and write that data to a PDF file with a Python program - all in a single command-line invocation (after writing the individual programs, of course).

It requires the xtopdf toolkit, which you can get from:

https://bitbucket.org/vasudevram/xtopdf

Instructions for installing xtopdf:

http://jugad2.blogspot.in/2012/07/guide-to-installing-and-using-xtopdf.html

xtopdf in turn requires the open source version of the ReportLab toolkit, which you can get from:

http://www.reportlab.com/ftp (http://www.reportlab.com/ftp/reportlab-1.21.1.tar.gz)

It also requires the DMD compiler to compile the D program - this was the version used:

DMD32 D Compiler v2.071.2
	Recursive find replace in files using regex (Python)
Python
recipe 580653

by ccpizza

(files, regex, replace, search).

Revision 5.

Recursively find and replace text in files under a specific folder with preview of changed data in dry-run mode

Example Usage

See what is going to change (dry run):

find_replace.py --dir project/myfolder --search-regex "\d{4}-\d{2}-\d{2}" --replace-regex "2012-12-12" --dryrun

Do actual replacement:

find_replace.py --dir project/myfolder --search-regex "\d{4}-\d{2}-\d{2}" --replace-regex "2012-12-12"

Do actual replacement and create backup files:

find_replace.py --dir project/myfolder --search-regex "\d{4}-\d{2}-\d{2}" --replace-regex "2012-12-12" --create-backup

Same action as previous command with short-hand syntax:

find_replace.py -d project/myfolder -s "\d{4}-\d{2}-\d{2}" -r "2012-12-12" -b

Output of find_replace.py -h:

DESCRIPTION:
 Find and replace recursively from the given folder using regular expressions

optional arguments:
 -h, --help show this help message and exit
 --dir DIR, -d DIR folder to search in; by default current folder
 --search-regex SEARCH_REGEX, -s SEARCH_REGEX
 search regex
 --replace-regex REPLACE_REGEX, -r REPLACE_REGEX
 replacement regex
 --glob GLOB, -g GLOB glob pattern, i.e. *.html
 --dryrun, -dr don't replace anything just show what is going to be
 done
 --create-backup, -b Create backup files

USAGE:
 find_replace.py -d [my_folder] -s <search_regex> -r <replace_regex> -g [glob_pattern]
	File comparison utility in Python (Python)
Python
recipe 580631

by Vasudev Ram

(commandline, comparison, file, files, linux, python, unix, utilities).

This is a recipe to compare any two files via a Python command-line program.
It is like a basic version of the cmp command of Unix or the fc.exe (file compare) command of Windows.
	Python one-liner to compare two files (Python)
Python
recipe 580632

by Vasudev Ram

(comparison, file, files, programming, python).

As the title says ...

It prints True if the files compared are the same, and False if they differ (either in size or in content).
	Catalog multiple drives (Python)
Python
recipe 580619

by Jack Trainor

(drives, files, utility).

As one accumulates multiple drives, hard and flash, containing,
thousands even millions of files, it becomes useful to have a text file
containing an alphabetized catalog list of all files and their locations
by drive and directory.

The list can be searched by eye or by an editor to locate particular
files.

The list can also be loaded into a script to be filtered
programmatically as desired.
	generates a set of binary files by doing ASCII replacements on a master binary file, controlled by a csv file (Python)
Python
recipe 579099

by Antoni Gual

(ascii, files, python3, replace).

A hack that saved me a lot of time. Well perhaps not so much, but it was funnier than to do it manually.
	CSV to Flat File Converter (Python)
Python
recipe 579091

by FB36

(csv, files, utility).

Converts a CSV file to a flat file (table).
	Shortcut Utility (Python)
Python
recipe 579041

by FB36

(desktop, directories, directory, file, files, tkinter, ui, utilities, utility).

I dislike filling my desktop with shortcut icons in Windows.
This code enables creating shortcuts in a CSV file.
	Find Duplicate Files (Python)
Python
recipe 578950

by FB36

(dictionary, directories, directory, disk, file, files, utility).

Finds duplicate files which have same size and same content in the same directory or two different directories.
	search file extensions in directory (Python)
Python
recipe 578862

by Keisuke URAGO

(files, finder).

This code is find and print file extensions from directory.
	Reimplementation of rmtree supporting Windows reparse points (Python)
Python
recipe 578849

by Charles Grunwald

(ctypes, directories, files, remove, win32).

Revision 3.

Ctypes-based implementation of shutil.rmtree that correctly handles Windows reparse point folders. (symbolic links, junctions, etc)
	lndir.py (short python version of the BSD/X11 lndir utility) (Python)
Python
recipe 578535

by Mike 'Fuzzy' Partin

(directories, files, os_walk, sysadmin, walk).

Revision 2.

This should be valid for Python 2.6 and up, including the 3.x series.
	Progress bar class (Python)
Python
recipe 578228

by Xavier L.

(class, cli, curses, files, module, progress).

Revision 5.

See gist:3306295 for future developments.

Here is a little class that lets you present percent complete information in the form of a progress bar using the '=' character to represent completed portions, spaces to represent incomplete portions, '>' to represent the current portion and the actual percent done (rounded to integer) displayed at the end:

[===========>] 60%

When you initialize the class, you specify the minimum number (defaults to 0), the maximum number (defaults to 100), and the desired width of the progress bar. The brackets [] are included in the size of the progress bar, but you must allow for up to 4 characters extra to display the percentage.

You'd probably want to use this in conjuction with the curses module, or something like that so you can over-write the same portion of the screen to make your updates 'animated'.
	Move files with rename if required (Python)
Python
recipe 578116

by John Reid

(files, move, rename).

Revision 2.

A python script that renames (moves) files to a destination
directory. However it will not overwrite existing files. The
script uses a renaming strategy where a count is incremented
in order to avoid naming conflicts.

Example usage::

mv-rename a.ext b.ext target-dir/

would mv a.ext and b.ext into the target directory. If::

target-dir/a.ext
target-dir/b.ext

already exist, the newly moved files would be named::

target-dir/a-<N>.ext
target-dir/b-<M>.ext

where <N> and <M> are the lowest numbers such that there
is no conflict.
	Encrypt and Decrypt Text and Text Files (BETA) Jython GUI (Python)
Python
recipe 577957

by Alexander James Wallar

(cryptography, cryptology, decryption, encryption, encryption_decryption, files, hiding, text).

Revision 3.

This is a Jython GUI of my previous recipe: Encrypt and Decrypt Text and Text Files
	Selective directory walking (Python)
Python
recipe 577913

by Nick Coghlan

(directories, files, globbing).

Revision 2.

Python's os.walk() standard library iterator is useful if you want to walk an entire directory tree, but you're on your own when it comes to implementing name filtering and recursive depth limiting on top of it.

This recipe supports these features with an interface that is just as convenient as the underlying os.walk() API, while being significantly more powerful.
	Python reader for spss sav files (Python)
Python
recipe 577650

by Albert-Jan Roskam

(files, pasw, sav, spss, statistics).

Revision 3.

Python Program to read Spss system files (.sav)

* version 2 (FASTER!) *
Requires spssio32.dll, which can be freely downloaded from:
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home/wiki/We70df3195ec8_4f95_9773_42e448fa9029/page/Downloads%20for%20IBM%C2%AE%20SPSS%C2%AE%20Statistics?lang=en
You can also find this dll in the installation directory of SPSS (although SPSS is _not_ needed!)
The .dll should be saved in the same location as this program.
Parameters:
savFileName: the file name of the spss data file;
returnHeader: Boolean that indicates whether the first record
should be a list of variable names (default: True);
recodeSysmisTo: indicates to which value missing values should
be recoded (default: "");
selectVars: indicates which variables in the file should be
selected.The variables should be specified as a list or a tuple
of valid variable names. If None is specified, all variables
in the file are used (default: None);
verbose: Boolean that indicates whether information about the
spss data file (e.g., number of cases, variable names, file
size) should be printed on the screen (default:
True).
rawMode: Boolean that indicates whether values should get
SPSS-style formatting,and whether date variables (if present)
should be converted to ISO-dates. If True, the program does not
format any values, which increases processing speed. (default:
= False)
interfaceEncoding Indicates the mode in which text communicated
to or from the I/O Module will be. Valid values are 'UTF-8' or
'CODEPAGE' (default = 'CODEPAGE')
Typical use:
savFileName = "d:/someFile.sav"
with SavReader(savFileName) as sav:
 header = sav.next()
 for line in sav:
 process(line)
Note:
--New version: If you downloaded this previously, use the current version as it is MUCH faster!!
--this code currently only works on Windows (32 bits). I might make it work on Linux Ubuntu 10 at some point.
--date fields in spss are represented as the number of seconds since the Gregorian calendar. The program converts these, wherever possible, to ISO-dates (yyyy-mm-dd).

Any feedback is welcome! I'm still learning!

