Popular Python recipes tagged "gradient"http://code.activestate.com/recipes/langs/python/tags/gradient/2017-03-11T03:43:56-08:00ActiveState Code RecipesTkinter frame with gradient (Python)
2017-03-11T03:43:56-08:00Miguel Martínez Lópezhttp://code.activestate.com/recipes/users/4189907/http://code.activestate.com/recipes/580761-tkinter-frame-with-gradient/
<p style="color: grey">
Python
recipe 580761
by <a href="/recipes/users/4189907/">Miguel Martínez López</a>
(<a href="/recipes/tags/canvas/">canvas</a>, <a href="/recipes/tags/frame/">frame</a>, <a href="/recipes/tags/gradient/">gradient</a>, <a href="/recipes/tags/tkinter/">tkinter</a>).
Revision 4.
</p>
<p>Frame with linear gradient using PIL. </p>
<p>It's also possible to make the same trick using tkinter PhotoImage.</p>
<p><a href="http://stackoverflow.com/questions/10417524/why-is-photoimage-put-slow" rel="nofollow">http://stackoverflow.com/questions/10417524/why-is-photoimage-put-slow</a></p>
<p>But PIL is more efficient:</p>
<p><a href="https://groups.google.com/forum/#%21topic/comp.lang.python/nQ6YO-dTz10" rel="nofollow">https://groups.google.com/forum/#!topic/comp.lang.python/nQ6YO-dTz10</a></p>
<p>Possible values for <strong>orient</strong> are: <em>VERTICAL</em>, <em>HORIZONTAL</em>. If <strong>orient</strong> is "vertical", then width is mandatory. If <strong>orient</strong> is "horizontal", then height is mandatory. If <strong>steps</strong> is <em>None</em>, then the gradient is composed of adjacent lines.</p>
<p>One possible practical application of gradient frames are tool bars. Gradient guives a visual clue of when an area starts and when an area finish. </p>
Auto differentiation (Python)
2016-08-07T22:02:10-07:00Raymond Hettingerhttp://code.activestate.com/recipes/users/178123/http://code.activestate.com/recipes/580610-auto-differentiation/
<p style="color: grey">
Python
recipe 580610
by <a href="/recipes/users/178123/">Raymond Hettinger</a>
(<a href="/recipes/tags/autodifferentiation/">autodifferentiation</a>, <a href="/recipes/tags/calculus/">calculus</a>, <a href="/recipes/tags/descent/">descent</a>, <a href="/recipes/tags/gradient/">gradient</a>, <a href="/recipes/tags/math/">math</a>, <a href="/recipes/tags/optimization/">optimization</a>, <a href="/recipes/tags/vector/">vector</a>).
Revision 5.
</p>
<p>Directly computes derivatives from ordinary Python functions using auto differentiation. The technique directly computes the desired derivatives to full precision without resorting to symbolic math and without making estimates bases on numerical methods.</p>
<p>The module provides a Num class for "dual" numbers that performs both regular floating point math on a value and its derivative at the same time. In addition, the module provides drop-in substitutes for most of the functions in the math module. There are also tools for partial derivatives, directional derivatives, gradients of scalar fields, and the curl and divergence of vector fields.</p>