Popular Python recipes tagged "array"http://code.activestate.com/recipes/langs/python/tags/array/2016-09-22T12:25:30-07:00ActiveState Code RecipesSimple Matlab/Ocave like arrays conversion to numpy.arrays in python interpreter (Python)
2016-09-22T12:25:30-07:00Przemyslaw Podczasihttp://code.activestate.com/recipes/users/4179716/http://code.activestate.com/recipes/580700-simple-matlabocave-like-arrays-conversion-to-numpy/
<p style="color: grey">
Python
recipe 580700
by <a href="/recipes/users/4179716/">Przemyslaw Podczasi</a>
(<a href="/recipes/tags/array/">array</a>, <a href="/recipes/tags/interpreter/">interpreter</a>, <a href="/recipes/tags/matlab/">matlab</a>).
</p>
<p>Matlab/Octave syntax for 1D/2D arrays is more packed and doesn't require putting extra ',' and extra '[', ']' between dimensions.
For this I wrote a parser that intercepts python interpreter and using numpy functionality parses Matlab's style arrays 1D and 2D into numpy.arrays.</p>
Python - from nD array to flat array (Python)
2014-03-21T16:09:39-07:00Roberto Bellohttp://code.activestate.com/recipes/users/4189498/http://code.activestate.com/recipes/578854-python-from-nd-array-to-flat-array/
<p style="color: grey">
Python
recipe 578854
by <a href="/recipes/users/4189498/">Roberto Bello</a>
(<a href="/recipes/tags/array/">array</a>, <a href="/recipes/tags/flatten/">flatten</a>, <a href="/recipes/tags/nd/">nd</a>).
</p>
<p>From a multidimensional array to a flat array avoiding numpy.
The code could be better?</p>
Easy Bit Arrays using Long Integers (Python)
2013-12-01T02:21:14-08:00Mike Sweeneyhttp://code.activestate.com/recipes/users/4177990/http://code.activestate.com/recipes/578777-easy-bit-arrays-using-long-integers/
<p style="color: grey">
Python
recipe 578777
by <a href="/recipes/users/4177990/">Mike Sweeney</a>
(<a href="/recipes/tags/array/">array</a>, <a href="/recipes/tags/bit/">bit</a>, <a href="/recipes/tags/bitwise/">bitwise</a>, <a href="/recipes/tags/integer/">integer</a>, <a href="/recipes/tags/long/">long</a>).
</p>
<p>Some simple techniques for working with long integers as bit arrays. Python support for long integers allows fast bitwise operations on large bit arrays. Bitwise operations on 100 million bit arrays happen in the blink of an eye. They are also fast and compact when saving and loading to disk. Unfortunately bit set, get, append, pop etc are slow so another bit array technique may be preferred.</p>
Flatten Array/Tuple (Python)
2011-10-31T10:53:39-07:00Luca Zarottihttp://code.activestate.com/recipes/users/4179728/http://code.activestate.com/recipes/577932-flatten-arraytuple/
<p style="color: grey">
Python
recipe 577932
by <a href="/recipes/users/4179728/">Luca Zarotti</a>
(<a href="/recipes/tags/array/">array</a>, <a href="/recipes/tags/flatten/">flatten</a>, <a href="/recipes/tags/tuple/">tuple</a>).
</p>
<p>Flatten a nested array/tuple</p>
Simple numeric database (Python)
2011-05-16T08:41:46-07:00Mike Sweeneyhttp://code.activestate.com/recipes/users/4177990/http://code.activestate.com/recipes/577697-simple-numeric-database/
<p style="color: grey">
Python
recipe 577697
by <a href="/recipes/users/4177990/">Mike Sweeney</a>
(<a href="/recipes/tags/array/">array</a>, <a href="/recipes/tags/database/">database</a>, <a href="/recipes/tags/numeric/">numeric</a>).
Revision 2.
</p>
<p>A simple in-memory numeric database for Python. Arrays are used to minimise memory consumption.</p>
Simple numeric database (Python)
2011-05-16T12:11:24-07:00Hamidreza Joshaghanihttp://code.activestate.com/recipes/users/4177804/http://code.activestate.com/recipes/577698-simple-numeric-database/
<p style="color: grey">
Python
recipe 577698
by <a href="/recipes/users/4177804/">Hamidreza Joshaghani</a>
(<a href="/recipes/tags/array/">array</a>, <a href="/recipes/tags/database/">database</a>, <a href="/recipes/tags/numeric/">numeric</a>).
</p>
<p>A simple in-memory numeric database for Python. Arrays are used to minimise memory consumption.</p>
Infix operators for numpy arrays (Python)
2010-06-07T05:57:07-07:00John Schulmanhttp://code.activestate.com/recipes/users/4171677/http://code.activestate.com/recipes/577201-infix-operators-for-numpy-arrays/
<p style="color: grey">
Python
recipe 577201
by <a href="/recipes/users/4171677/">John Schulman</a>
(<a href="/recipes/tags/array/">array</a>, <a href="/recipes/tags/infix/">infix</a>, <a href="/recipes/tags/matrix/">matrix</a>, <a href="/recipes/tags/multiplication/">multiplication</a>, <a href="/recipes/tags/numpy/">numpy</a>).
Revision 3.
</p>
<p>This recipe adapts the infix operator trick from <a href="http://code.activestate.com/recipes/384122-infix-operators/" rel="nofollow">http://code.activestate.com/recipes/384122-infix-operators/</a> to give the appropriate behavior with numpy arrays, so you can write A *dot* B for np.dot(A,B)</p>
<p>UPDATE
A solution to the dot problem was recently added to the numpy trunk: the dot method was added to the ndarray class so you can write a.dot(b). See <a href="http://projects.scipy.org/numpy/ticket/1456" rel="nofollow">http://projects.scipy.org/numpy/ticket/1456</a></p>