This module exposes primitives useful for executing Markov Encryption processes. ME was inspired by a combination of Markov chains with the puzzles of Sudoku. This implementation has undergone numerous changes and optimizations since its original design. Please see documentation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | """Provide an implementation of Markov Encryption for simplified use.
This module exposes primitives useful for executing Markov Encryption
processes. ME was inspired by a combination of Markov chains with the
puzzles of Sudoku. This implementation has undergone numerous changes
and optimizations since its original design. Please see documentation."""
__author__ = 'Stephen "Zero" Chappell <Noctis.Skytower@gmail.com>'
__date__ = '5 September 2012'
__version__ = 2, 0, 7
################################################################################
# Import several functions needed later in the code.
from random import SystemRandom
from sys import _getframe
from collections import deque
################################################################################
# Create some tools to use in the classes down below.
_CHAOS = SystemRandom()
def slots(names=''):
"""Set the __slots__ variable in the calling context with private names.
This function allows a convenient syntax when specifying the slots
used in a class. Simply call it in a class definition context with
the needed names. Locals are modified with private slot names."""
_getframe(1).f_locals['__slots__'] = \
tuple('__' + name for name in names.replace(',', ' ').split())
################################################################################
# Implement a Key primitive data type for Markov Encryption.
class Key:
"""Key(data) -> Key instance
This class represents a Markov Encryption Key primitive. It allows for
easy key creation, checks for proper data construction, and helps with
encoding and decoding indexes based on cached internal tables."""
slots('data dimensions base size encoder axes order decoder')
@classmethod
def new(cls, bytes_used, chain_size):
"""Return a Key instance created from bytes_used and chain_size.
Creating a new key is easy with this method. Call this class method
with the bytes you want the key to recognize along with the size of
the chains you want the encryption/decryption processes to use."""
selection, blocks = list(set(bytes_used)), []
for _ in range(chain_size):
_CHAOS.shuffle(selection)
blocks.append(bytes(selection))
return cls(tuple(blocks))
def __init__(self, data):
"""Initialize the Key instance's variables after testing the data.
Keys are created with tuples of carefully constructed bytes arrays.
This method tests the given data before going on to build internal
tables for efficient encoding and decoding methods later on."""
self.__test_data(data)
self.__make_vars(data)
@staticmethod
def __test_data(data):
"""Test the data for correctness in its construction.
The data must be a tuple of at least two byte arrays. Each byte
array must have at least two bytes, all of which must be unique.
Furthermore, all arrays should share the exact same byte set."""
if not isinstance(data, tuple):
raise TypeError('Data must be a tuple object!')
if len(data) < 2:
raise ValueError('Data must contain at least two items!')
item = data[0]
if not isinstance(item, bytes):
raise TypeError('Data items must be bytes objects!')
length = len(item)
if length < 2:
raise ValueError('Data items must contain at least two bytes!')
unique = set(item)
if len(unique) != length:
raise ValueError('Data items must contain unique byte sets!')
for item in data[1:]:
if not isinstance(item, bytes):
raise TypeError('Data items must be bytes objects!')
next_length = len(item)
if next_length != length:
raise ValueError('All data items must have the same size!')
next_unique = set(item)
if len(next_unique) != next_length:
raise ValueError('Data items must contain unique byte sets!')
if next_unique ^ unique:
raise ValueError('All data items must use the same byte set!')
def __make_vars(self, data):
"""Build various internal tables for optimized calculations.
Encoding and decoding rely on complex relationships with the given
data. This method caches several of these key relationships for use
when the encryption and decryption processes are being executed."""
self.__data = data
self.__dimensions = len(data)
base, *mutations = data
self.__base = base = tuple(base)
self.__size = size = len(base)
offset = -sum(base.index(block[0]) for block in mutations[:-1]) % size
self.__encoder = base[offset:] + base[:offset]
self.__axes = tuple(reversed([tuple(base.index(byte) for byte in block)
for block in mutations]))
self.__order = key = tuple(sorted(base))
grid = []
for rotation in range(size):
block, row = base[rotation:] + base[:rotation], [None] * size
for byte, value in zip(block, key):
row[key.index(byte)] = value
grid.append(tuple(row))
self.__decoder = tuple(grid[offset:] + grid[:offset])
def test_primer(self, primer):
"""Raise an error if the primer is not compatible with this key.
Key and primers have a certain relationship that must be maintained
in order for them to work together. Since the primer understands
the requirements, it is asked to check this key for compatibility."""
primer.test_key(self)
def encode(self, index):
"""Encode index based on internal tables and return byte code.
An index probes into the various axes of the multidimensional,
virtual grid that a key represents. The index is evaluated, and
the value at its coordinates is returned by running this method."""
assert len(index) == self.__dimensions, \
'Index size is not compatible with key dimensions!'
*probes, current = index
return self.__encoder[(sum(table[probe] for table, probe in
zip(self.__axes, probes)) + current) % self.__size]
def decode(self, index):
"""Decode index based on internal tables and return byte code.
Decoding does the exact same thing as encoding, but it indexes
into a virtual grid that represents the inverse of the encoding
grid. Tables are used to make the process fast and efficient."""
assert len(index) == self.__dimensions, \
'Index size is not compatible with key dimensions!'
*probes, current = index
return self.__decoder[sum(table[probe] for table, probe in
zip(self.__axes, probes)) % self.__size][current]
@property
def data(self):
"""Data that the instance was initialized with.
This is the tuple of byte arrays used to create this key and can
be used to create an exact copy of this key at some later time."""
return self.__data
@property
def dimensions(self):
"""Dimensions that the internal, virtual grid contains.
The virtual grid has a number of axes that can be referenced when
indexing into it, and this number is the count of its dimensions."""
return self.__dimensions
@property
def base(self):
"""Base value that the internal grid is built from.
The Sudoku nature of the grid comes from rotating this value by
offsets, keeping values unique along any axis while traveling."""
return self.__base
@property
def order(self):
"""Order of base after its values have been sorted.
A sorted base is important when constructing inverse rows and when
encoding raw bytes for use in updating an encode/decode index."""
return self.__order
################################################################################
# Implement a Primer primitive data type for Markov Encryption.
class Primer:
"""Primer(data) -> Primer instance
This class represents a Markov Encryption Primer primitive. It is very
important for starting both the encryption and decryption processes. A
method is provided for their easy creation with a related key."""
slots('data')
@classmethod
def new(cls, key):
"""Return a Primer instance from a parent Key.
Primers must be compatible with the keys they are used with. This
method takes a key and constructs a cryptographically sound primer
that is ready to use in the beginning stages of encryption."""
base = key.base
return cls(bytes(_CHAOS.choice(base)
for _ in range(key.dimensions - 1)))
def __init__(self, data):
"""Initialize the Primer instance after testing validity of data.
Though not as complicated in its requirements as keys, primers do
need some simple structure in the data they are given. A checking
method is run before saving the data to the instance's attribute."""
self.__test_data(data)
self.__data = data
@staticmethod
def __test_data(data):
"""Test the data for correctness and test the data.
In order for the primer to be compatible with the nature of the
Markov Encryption processes, the data must be an array of bytes;
and to act as a primer, it must contain at least some information."""
if not isinstance(data, bytes):
raise TypeError('Data must be a bytes object!')
if not data:
raise ValueError('Data must contain at least one byte!')
def test_key(self, key):
"""Raise an error if the key is not compatible with this primer.
Primers provide needed data to start encryption and decryption. For
it be compatible with a key, it must contain one byte less than the
key's dimensions and must be a subset of the base in the key."""
if len(self.__data) != key.dimensions - 1:
raise ValueError('Key size must be one more than the primer size!')
if not set(self.__data).issubset(key.base):
raise ValueError('Key data must be a superset of primer data!')
@property
def data(self):
"""Data that the instance was initialized with.
This is the byte array used to create this primer and can be used
if desired to create an copy of this primer at some later time."""
return self.__data
################################################################################
# Create an abstract processing class for use in encryption and decryption.
class _Processor:
"""_Processor(key, primer) -> NotImplementedError exception
This class acts as a base for the encryption and decryption processes.
The given key is saved, and several tables are created along with an
index. Since it is abstract, calling the class will raise an exception."""
slots('key into index from')
def __init__(self, key, primer):
"""Initialize the _Processor instance if it is from a child class.
After passing several tests for creating a valid processing object,
the key is saved, and the primer is used to start an index. Tables
are also formed for converting byte values between systems."""
if self.__class__ is _Processor:
raise NotImplementedError('This is an abstract class!')
key.test_primer(primer)
self.__key = key
self.__into = table = dict(map(reversed, enumerate(key.order)))
self.__index = deque(map(table.__getitem__, primer.data),
key.dimensions)
self.__from = dict(map(reversed, table.items()))
def process(self, data):
"""Process the data and return its transformed state.
A cache for the data transformation is created and an internal
method is run to quickly encode or decode the given bytes. The
cache is finally converted to immutable bytes when returned."""
cache = bytearray()
self._run(data, cache.append, self.__key, self.__into, self.__index)
return bytes(cache)
@staticmethod
def _run(data, cache_append, key, table, index):
"""Run the processing algorithm in an overloaded method.
Since this is only an abstract base class for encoding/decoding,
this method will raise an exception when run. Inheriting classes
should implement whatever is appropriate for the intended function."""
raise NotImplementedError('This is an abstract method!')
@property
def primer(self):
"""Primer representing the state of the internal index.
The index can be retrieved as a primer, useful for initializing
another processor in the same starting state as the current one."""
index = self.__index
index.append(None)
index.pop()
return Primer(bytes(map(self.__from.__getitem__, index)))
################################################################################
# Inherit from _Processor and implement the ME encoding algorithm.
class Encrypter(_Processor):
"""Encrypter(key, primer) -> Encrypter instance
This class represents a state-aware encryption engine that can be fed
data and will return a stream of coherent cipher-text. An index is
maintained, and a state-continuation primer can be retrieved at will."""
slots()
@staticmethod
def _run(data, cache_append, key, table, index):
"""Encrypt the data with the given arguments.
To run the encryption process as fast as possible, methods are
cached as names. As the algorithm operates, only recognized bytes
are encoded while running through the selective processing loop."""
encode, index_append = key.encode, index.append
for byte in data:
if byte in table:
index_append(table[byte])
cache_append(encode(index))
else:
cache_append(byte)
################################################################################
# Inherit from _Processor and implement the ME decoding algorithm.
class Decrypter(_Processor):
"""Decrypter(key, primer) -> Decrypter instance
This class represents a state-aware decryption engine that can be fed
data and will return a stream of coherent plain-text. An index is
maintained, and a state-continuation primer can be retrieved at will."""
slots()
@staticmethod
def _run(data, cache_append, key, table, index):
"""Decrypt the data with the given arguments.
To run the decryption process as fast as possible, methods are
cached as names. As the algorithm operates, only recognized bytes
are decoded while running through the selective processing loop."""
decode, index_append = key.decode, index.append
for byte in data:
if byte in table:
index_append(table[byte])
value = decode(index)
cache_append(value)
index[-1] = table[value]
else:
cache_append(byte)
################################################################################
# Provide functions to easily encrypt and decrypt both bytes and strings.
def encrypt_bytes(data, key, primer):
"""Return encoded data processed with the key and primer.
This function is a shortcut for creating an Encrypter instance,
processing the data with the encryption engine, and returning the
cipher-text along with the primer representing the engine's state."""
engine = Encrypter(key, primer)
return engine.process(data), engine.primer
def decrypt_bytes(data, key, primer):
"""Return decoded data processed with the key and primer.
This function is a shortcut for creating a Decrypter instance,
processing the data with the decryption engine, and returning the
plain-text along with the primer representing the engine's state."""
engine = Decrypter(key, primer)
return engine.process(data), engine.primer
def encrypt_str(string, key, primer, encoding='utf-8', errors='ignore'):
"""Encode string with key and primer through binary interface.
This function does its best to encrypt a string with a key and primer,
taking the string's encoding into account and handling errors as given
in the keyword arguments following the standard byte-level arguments."""
engine = Encrypter(key, primer)
return engine.process(string.encode(encoding, errors))\
.decode(encoding, errors), engine.primer
def decrypt_str(string, key, primer, encoding='utf-8', errors='ignore'):
"""Decode string with key and primer through binary interface.
This function does its best to decrypt a string with a key and primer,
taking the string's encoding into account and handling errors as given
in the keyword arguments following the standard byte-level arguments."""
engine = Decrypter(key, primer)
return engine.process(string.encode(encoding, errors))\
.decode(encoding, errors), engine.primer
################################################################################
# Allow immediate encryption with automatically generated keys and primers.
def auto_encrypt_bytes(data, chain_size, plain_text=b''):
"""Encrypt data with automatically generated key and primer.
This function automates key and primer creation and encrypts the
data with them. The two arguments following the data allow some
simple customizations of the key and primer generation process."""
key = Key.new(set(data) - set(plain_text), chain_size)
primer = Primer.new(key)
return Encrypter(key, primer).process(data), key, primer
def auto_encrypt_str(string, chain_size, plain_text='',
encoding='utf-8', errors='ignore'):
"""Encrypt string with automatically generated key and primer.
This function automates key and primer creation and encrypts the
string with them. The two arguments following the data allow some
simple customizations of the key and primer generation process."""
string, plain_text = string.encode(encoding, errors), \
plain_text.encode(encoding, errors)
key = Key.new(set(string) - set(plain_text), chain_size)
primer = Primer.new(key)
return Encrypter(key, primer).process(string)\
.decode(encoding, errors), key, primer
|
Hi. I was actually trying to encrypt some string using the above code. I tried auto_encrypt_str("hello" , 2 ) . But every time I run it, I get this error :-- ValueError: Data items must contain unique byte sets!
Can you please tell what input should we give?