Bag/multiset class for convenient tallying of hashable objects.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | from operator import itemgetter
from heapq import nlargest
from itertools import repeat, ifilter
class Counter(dict):
'''Dict subclass for counting hashable objects. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values.
>>> Counter('zyzygy')
Counter({'y': 3, 'z': 2, 'g': 1})
'''
def __init__(self, iterable=None, **kwds):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts.
>>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
>>> c = Counter(a=4, b=2) # a new counter from keyword args
'''
self.update(iterable, **kwds)
def __missing__(self, key):
return 0
def most_common(self, n=None):
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts.
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]
'''
if n is None:
return sorted(self.iteritems(), key=itemgetter(1), reverse=True)
return nlargest(n, self.iteritems(), key=itemgetter(1))
def elements(self):
'''Iterator over elements repeating each as many times as its count.
>>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C']
If an element's count has been set to zero or is a negative number,
elements() will ignore it.
'''
for elem, count in self.iteritems():
for _ in repeat(None, count):
yield elem
# Override dict methods where the meaning changes for Counter objects.
@classmethod
def fromkeys(cls, iterable, v=None):
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
def update(self, iterable=None, **kwds):
'''Like dict.update() but add counts instead of replacing them.
Source can be an iterable, a dictionary, or another Counter instance.
>>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch
4
'''
if iterable is not None:
if hasattr(iterable, 'iteritems'):
if self:
self_get = self.get
for elem, count in iterable.iteritems():
self[elem] = self_get(elem, 0) + count
else:
dict.update(self, iterable) # fast path when counter is empty
else:
self_get = self.get
for elem in iterable:
self[elem] = self_get(elem, 0) + 1
if kwds:
self.update(kwds)
def copy(self):
'Like dict.copy() but returns a Counter instance instead of a dict.'
return Counter(self)
def __delitem__(self, elem):
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
dict.__delitem__(self, elem)
def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items)
# Multiset-style mathematical operations discussed in:
# Knuth TAOCP Volume II section 4.6.3 exercise 19
# and at http://en.wikipedia.org/wiki/Multiset
#
# Outputs guaranteed to only include positive counts.
#
# To strip negative and zero counts, add-in an empty counter:
# c += Counter()
def __add__(self, other):
'''Add counts from two counters.
>>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1})
'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem in set(self) | set(other):
newcount = self[elem] + other[elem]
if newcount > 0:
result[elem] = newcount
return result
def __sub__(self, other):
''' Subtract count, but keep only results with positive counts.
>>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1})
'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem in set(self) | set(other):
newcount = self[elem] - other[elem]
if newcount > 0:
result[elem] = newcount
return result
def __or__(self, other):
'''Union is the maximum of value in either of the input counters.
>>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1})
'''
if not isinstance(other, Counter):
return NotImplemented
_max = max
result = Counter()
for elem in set(self) | set(other):
newcount = _max(self[elem], other[elem])
if newcount > 0:
result[elem] = newcount
return result
def __and__(self, other):
''' Intersection is the minimum of corresponding counts.
>>> Counter('abbb') & Counter('bcc')
Counter({'b': 1})
'''
if not isinstance(other, Counter):
return NotImplemented
_min = min
result = Counter()
if len(self) < len(other):
self, other = other, self
for elem in ifilter(self.__contains__, other):
newcount = _min(self[elem], other[elem])
if newcount > 0:
result[elem] = newcount
return result
if __name__ == '__main__':
import doctest
print doctest.testmod()
|
This recipe was added to the collections module in Python 2.7. It has been modified here so that it runs on Python 2.5 or later. See the online docs at: http://docs.python.org/dev/library/collections.html#counter-objects
It is a simple dictionary subclass. By defining __missing__(), it automatically treats missing elements as having a count of zero. The most_common() method lists counts in decreasing order of frequency. The elements() method lists all elements with repeats as many times as their multiplicity. The update() method takes either an iterable of elements or a mapping of elements to their counts (the mapping can be another counter object). Unlike dict.update(), this method adds-in counts instead of replaces them.
Examples:
Tally occurrences of words in a list
>>> cnt = Counter()
>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
... cnt[word] += 1
>>> cnt
Counter({'blue': 3, 'red': 2, 'green': 1})
Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall('\w+', open('hamlet.txt').read().lower())
>>> Counter(hamlet_words).most_common(10)
[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]
Multiset examples
>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d # add two counters together: c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d # subtract (keeping only positive counts)
Counter({'a': 2})
>>> c & d # intersection: min(c[x], d[x])
Counter({'a': 1, 'b': 1})
>>> c | d # union: max(c[x], d[x])
Counter({'a': 3, 'b': 2})
Answer to Larry's question: the signature for Counter.update() matches the signatures of set.update() and dict.update() which also allow an empty argument. Also, the empty positional argument is handy when keyword arguments are being used: c.update(tests_run=1, tests_remaining=-1, tests_passed=result).
A minor question--why is the signature of update() like that? I don't see why anyone would call Counter.update() without an argument. I'd drop the "=None" from the arguments list and the "if iterable is not None:" statement. Or am I missing something?
In a similar vein, under what circumstances would Counter.__repr__ ever be called with self=None? How would you even do that? Python 2.6 won't let me. Again, I wonder what I'm missing.
This may be usefull :
It's the same thing as update() though, so it could be factorized.
Great! and I am Registering to say that maybe "words" should be replaced by "hamlet_words" or contrarily!
Regarding Louis RIVIERE's comment about also having a
subtract()
method:Besides potentially being useful, the version of the
Counter
class in Python 2.7 includes a method of that name -- so it should be added to this recipe for a more complete emulation. Until that officially happens, here's a copy of the source code of it from CPython 2.7.5:Note that unlike
__sub__()
, this method accepts an iterable or mapping as an argument (rather than only anotherCounter
object). Another significant difference between them -- as noted in the doc string -- is that items that end up with a count of zero (or less) are not removed by the above.