Providing undo has become a standard feature for interactive programs. One approach to implement undo is to code each user level operation in three variants: a "do" version, an "undo" version, and a "redo" version.
If you can meet the requirements of this module, you only have to code the "do" variant.
This recipe builds on recipes http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/306864 and http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/306865. It assumes that those recipes are stored as list_dict_observer.py and scalar_observer.py, respectivly.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 | """
Purpose of this module:
Provide a basic undo mechanism.
The undo mechanism is build on top of the observer pattern. The basic
undoer records all parameters needed to undo the change of attributes.
Precondition for usage as an undo mechanism:
1. All attributes important for the undo / redo mechanism must be
implemented as attributes of new style classes, or be lists or
dictionaries as mentioned below.
2. Those attributes must be used in a consistent style:
a) The values of an attribute should only be a"scalar", a list or a
dictionary [they should have a "type"]. [the same attribute should
not contain a dictionary at one point in time, and a integer later].
3. The undoer has to be informed of those attributes, it has to be
activated, and it has to be informed when one undoable
operation is complete.
4. For lists and dictionaries, the module offers a drop-in
replacements to intercept changes. You might have to change the
creation of your lists and dictionaries to use these
replacement lists and dictionaries.
You can mix the mechanism provided here with a higher level interface.
For scalars, we put "scalar_observer" into the attribute slot to intercept
accesses to the attribute. The values themselves live in a different, "private"
attribute. These private attributes are accessed directly for the
undo / redo steps.
It is important to note that undoing / redoing should not trigger the
undo mechanism. The methods implemented in this module should observe
this restriction.
For dictionaries and lists, we derive the base types. The undo / redo
mechanism uses the methods of the original type.
If you assign a list or a dictionary to a observed attribute
(observe_list_attribute_in_class or observer_dict_attribute_in_class),
the list or mapping is automatically converted to a monitored list or
mapping. This conversion is not done recursively, however.
"""
from scalar_observer import scalar_observer, list_observer_in_instance, dict_observer_in_instance
from list_dict_observer import list_observer, dict_observer
__all__ =('scalar_observer', 'list_observer', 'dict_observer', 'observer', 'basic_undomechanism')
class passthrough(object):
"""
Instances of this class are used to disable monitoring for scalar attributes.
The values are just passed through.
"""
def __init__ (self,private_attributename):
self.private_attributename = private_attributename
def __set__ (self, instance, value):
setattr(instance, self.private_attributename, value)
def __get__ (self, instance, owner):
return getattr(instance, self.private_attributename)
class observer(object):
"""
Observe changes to (new style) classes.
To use:
a) Call observe_scalar(klass, external_attributename)
for each scalar attribute you want to observer.
The normal Python comparison operation (=) is used to check if
a new value is stored in an instance attribute.
b) Call observe_list(klass, external_attributename) for each
list attribute you want to observe.
c) Call observe_dict(klass, external_attributename) for each
dict attribute you want to observe.
2. Call enable / disable to enable / disable observation.
This is an abstract class.
Limitations:
Assumes that instance attributes are used consistently with
certain types.
"""
def __init__ (self):
self.observed_scalar_attributes =[]
self.observed_list_attributes =[]
self.observed_dict_attributes =[]
self.removed_functions =[]
self.observer = self
# See enable_category.
# Overwriting this one attribute allows
# Clients of this module to implemente tracing of all
# calls to this module.
self.is_enabled = False
# Is set to True if enabled is called. Set to False if
# disable is called.
def monitor_scalar (self, klass, external_attributename):
"""
Put in a hook so that we can observe modications to instances of klass
with respect to the attribute "attributename".
It is assumed that the attribute only contains scalar objects. A scalar
object is an object which is unstructured, and not shared.
If the value of an attribute is an instance (or None), then this is considered
a scalar: the structure is exposed within the instance, not at the attribute level.
"""
self.observed_scalar_attributes.append((klass, external_attributename))
def monitor_list_attribute_in_class (self, klass, external_attributename):
self.observed_list_attributes.append((klass, external_attributename))
def observe_dict_attribute_in_class (self, klass, external_attributename):
self.observed_dict_attributes.append((klass, external_attributename))
#
# Delayed activation of the observer mechanism is probably useful.
#
# Switching on / off is potentially useful.
def enable (self):
"""
Enable monitoring.
Return True if monitoring was already enabled, false otherwise.
"""
result = self.is_enabled
for l, klass in((self.observed_scalar_attributes, scalar_observer),
(self.observed_list_attributes, list_observer_in_instance),
(self.observed_dict_attributes, dict_observer_in_instance)):
self.enable_category(l, klass)
self.enable_put_in_removed_functions()
self.is_enabled = True
return result
def enable_put_in_removed_functions (self):
"""
Reinstate the functions which were removed from list_observer and dict_observer.
"""
for klass, attribute, function in self.removed_functions:
setattr(klass, attribute, function)
def enable_category (self, l, monitor_class):
for klass, external_attributename in l:
setattr(klass, external_attributename,
monitor_class(external_attributename, self.observer))
def disable_category (self, l, monitor_class):
for klass, external_attributename in l:
setattr(klass, external_attributename, passthrough(internal_attributename))
def disable (self):
"""
Disable monitoring (temporarily).
"""
was_enabled = self.is_enabled
if was_enabled:
for l, klass in(
(self.observed_scalar_attributes, scalar_observer),
(self.observed_list_attributes, list_observer_in_instance),
(self.observed_dict_attributes, dict_observer_in_instance)):
self.disable_category(l, klass)
self.remove_overrides_in_list_and_dict_monitor()
self.is_enabled = False
return was_enabled
def remove_overrides_in_list_and_dict_monitor (self):
"""
Deletes all function definitions in list_observer and dict_observer.
The net effect of this is that instances of these classes should
behave like regular lists and dictionaries.
"""
import inspect
for klass in(list_observer, dict_observer):
for attribute in dir(klass):
try:
entity = getattr(klass, attribute)
except AttributeError:
pass
else:
if inspect.isfunction(entity):
delattr(klass, attribute)
self.removed_functions.append(klass, attribute, entity)
class basic_undomechanism(observer):
"""
This class provides the basic operations for undoable operations.
Records a list of changes which it will undone or redone one by
one.
The granularity of the undo / redo operations is determined by
calls to the 'mark' procedure. Only immediately after the 'mark'
call can undo be called. Redo can only be called after calling
undo.
'rollback' is a special case of undo: it is not redoable, and mark
should *not* have been called.
The envisioned usage of this facility is in error recovery: if a
command does not go through, you can call this command to undo all
your changes (and leave the application in a consistent state).
Use the observe_scalar, observe_list_attribute_in_class and
observe_dict_attribute_in_class methods to make assignment to
instance variables undoable.
Usage pattern:
m = basic_undomechanism()
class c(object):
def x(self):
self.y = 122
m.observe_scalar(c, "y")
m.enable()
All assignements to y in instances of c will now be monitored, and information
will be stored away to make the changes undoable.
Call 'enable' to activate the undo mechanism, 'disable' to
temporarily stop the undo mechanism from collecting information
about changes.
The individual changes are bundled into "_commands". The
boundaries of these _commands are marked by a call to the
procedure "mark".
The procedure 'reset' can be called externally to erase all undo
information.
Individual lists and dictionaries can also be monitored for change
with the list_observer and dict_observer classes.
If you do not nest lists / dictionaries in lists / dictionaries,
then you might be able to use the automatic conversion offered by
the 'list_observer_in_instance' and 'dict_observer_in_instance'
class.
You can also mix "high level undo" with "low level undo". Usage
pattern:
was_enabled = m.disable()
def undo_function(*args):
# undo something
if was_enabled:
m.enable()
return (redo_function, redo_arguments)
# compute the undo arguments.
m.add_undo_step(undo_function, undo_arguments)
Possible optimizations later: special handling for string attributes.
"""
def __init__ (self):
observer.__init__(self)
self.reset()
def reset (self):
self._steps =[]
self._commands =[None, None]
self._index = 0
# handling scalars
def scalar_set (self, instance, private_attributename, external_attributename):
self._steps.append((self.scalar_set_undo, (instance, private_attributename)))
def scalar_set_undo (self, instance, private_attributename):
"""Undo the changes done by the assignment of an instance"""
newvalue = getattr(instance, private_attributename)
delattr(instance, private_attributename)
return self.scalar_set_redo,(instance, private_attributename, newvalue)
def scalar_set_redo (self, instance, private_attributename, newvalue):
setattr(instance, private_attributename, newvalue)
return self.scalar_set_undo,(instance, private_attributename)
def scalar_modify (self, instance, private_attributename, external_attributename, oldvalue):
self._steps.append((self.scalar_modify_undo, (instance, private_attributename, oldvalue)))
def scalar_modify_undo (self, instance, private_attributename, oldvalue):
new_value = getattr(instance, private_attributename)
setattr(instance, private_attributename, oldvalue)
return self.scalar_modify_undo, (instance, private_attributename, new_value)
# handling lists
def list_assignment_replace (self, instance, attributename, oldvalue):
self._steps.append((self.list_assignment_replace_undo, (instance, attributename, oldvalue)))
def list_assignment_replace_undo (self, instance, attributename, oldvalue):
newvalue = getattr(instance, attributename)
setattr(instance, attributename, oldvalue)
return self.list_assignment_replace_redo, (instance, attributename, newvalue)
def list_assignment_replace_redo (self, instance, attributename, newvalue):
oldvalue = getattr(instance, attributename)
setattr(instance, attributename, newvalue)
return self.list_assignment_replace_undo, (instance, attributename, oldvalue)
def list_assignment_new (self, instance, attributename):
self._steps.append((self.list_assignment_new_undo, (instance, attributename)))
def list_assignment_new_undo (self, instance, attributename):
newvalue = getattr(instance, attributename)
delattr(instance, attributename)
return self.list_assignment_new_redo, (instance, attributename, newvalue)
def list_assignment_new_redo (self, instance, attributename, newvalue):
setattr(instance, attributename, newvalue)
return self.list_assignment_new_undo, (instance, attributename)
def list_create (self, array, key):
self._steps.append((self.list_create_undo, (array, key)))
def list_create_undo (self, array, key):
value = list.__getitem__(array, key)
list.__delitem__(array, key)
return self.list_create_redo, (array, key, value)
def list_create_redo (self, array, key, value):
list.__setitem__(array, key, value)
return self.list_create_undo, (array, key)
def list_set (self, array, key, oldvalue):
self._steps.append((self.list_set_undo, (array, key, oldvalue)))
def list_set_undo (self, array, key, value):
oldvalue = list.__getitem__(array, key)
list.__setitem__(array, key, value)
return self.list_set_undo, (array, key, oldvalue)
def list_setslice (self, list_observer, i, j, newvalue, oldvalue):
self._steps.append((self.undo_list_setslice, (list_observer, i, j, newvalue, oldvalue)))
def undo_list_setslice (self, list_observer, i, j, newvalue, oldvalue):
list.__setslice__(list_observer, i, i+len(newvalue), oldvalue)
return(self.redo_list_setslice, (list_observer, i, j, newvalue, oldvalue))
def redo_list_setslice (self, list_observer, i, j, newvalue, oldvalue):
list.__setslice__(list_observer, i, j, newvalue)
return(self.undo_list_setslice, (list_observer, i, j, newvalue, oldvalue))
def list_delslice (self, list_observer, i, oldvalue):
self.list_setslice(list_observer, i, i+len(oldvalue), [], oldvalue)
def list_del (self, list_observer, key, oldvalue):
self._steps.append((self.list_del_undo, (list_observer, key, oldvalue)))
def list_del_undo (self, list_observer, key, oldvalue):
if type(key)==type(1):
list.__setitem__(list_observer, slice(key, key), [oldvalue])
else:
list.__setitem__(list_observer, key, oldvalue)
return self.list_del_redo, (list_observer, key, oldvalue)
def list_del_redo (self, list_observer, key, oldvalue):
oldvalue = list.__getitem__(list_observer, key)
list.__delitem__(list_observer, key)
return self.list_del_undo, (list_observer, key, oldvalue)
def list_extend (self, list_observer, newvalue):
old_insert_index = len(list_observer) - len(newvalue)
self.list_setslice(list_observer, old_insert_index, old_insert_index, newvalue, [])
def list_insert (self, observer, i, x):
self.list_setslice(observer, i, i, [x], [])
def list_append (self, array):
self._steps.append((self.list_append_undo, (array, )))
def list_append_undo (self, array):
oldvalue = list.pop(array)
return self.list_append_redo, (array, oldvalue)
def list_append_redo (self, array, oldvalue):
list.append(array, oldvalue)
return self.list_append_undo, (array, )
def list_pop (self, array, oldvalue):
self._steps.append((self.list_append_redo, (array, oldvalue)))
def list_remove (self, list_object, index, element):
self.list_del(list_object, index, element)
def list_reverse (self, list_observer):
self._steps.append((self.list_reverse_undo, (list_observer, )))
def list_reverse_undo (self, list_observer):
list.reverse(list_observer)
return(self.list_reverse_undo, (list_observer, ))
def list_sort (self, list_observer, oldvalue):
self._steps.append((self.list_sort_undo, (list_observer, oldvalue)))
def list_sort_undo (self, list_observer, oldlist):
newlist = list_observer[:]
list.__setslice__(list_observer, 0, 2147483647, oldlist)
return(self.list_sort_undo, (list_observer, newlist))
# handling dictionaries
# Dictionary monitors are are really handled like list observers.
# For now, just use the same methods.
dict_assignment_new = list_assignment_new
dict_assignment_new_undo = list_assignment_new_undo
dict_assignment_new_redo = list_assignment_new_redo
dict_assignment_replace = list_assignment_replace
dict_assignment_replace_undo = list_assignment_replace_undo
dict_assignment_replace_redo = list_assignment_replace_redo
def dict_create (self, dictionary, key):
self._steps.append((self.dict_create_undo, (dictionary, key)))
def dict_create_undo (self, dictionary, key):
value = dict.__getitem__(dictionary, key)
dict.__delitem__(dictionary, key)
return self.dict_create_redo, (dictionary, key, value)
def dict_create_redo (self, dictionary, key, value):
dict.__setitem__(dictionary, key, value)
return self.dict_create_undo, (dictionary, key, )
def dict_set (self, dictionary, key, oldvalue):
self._steps.append((self.dict_set_undo, (dictionary, key, oldvalue)))
def dict_set_undo (self, dictionary, key, value):
oldvalue = dict.__getitem__(dictionary, key)
dict.__setitem__(dictionary, key, value)
return self.dict_set_undo, (dictionary, key, oldvalue)
def dict_update (self, dictionary, new_keys, replaced_key_values):
self._steps.append((self.dict_update_undo, (dictionary, new_keys, replaced_key_values)))
def dict_update_undo (self, dictionary, new_keys, replaced_key_values):
update_dict ={}
for key in new_keys:
update_dict[key] = dict.__getitem__(dictionary, key)
dict.__delitem__(dictionary, key)
for key, value in replaced_key_values:
update_dict[key] = dict.__getitem__(dictionary, key)
dict.__setitem__(dictionary, key, value)
return self.dict_update_redo, (dictionary, update_dict)
def dict_update_redo (self, dictionary, update_dict):
new_keys = []
replaced_key_values = []
for key, value in update_dict.items():
if key in dictionary:
replaced_key_values.append((key, dictionary[key]))
else:
new_keys.append(key)
dict.__setitem__(dictionary, key, value)
return self.dict_update_undo, (dictionary, new_keys, replaced_key_values)
def dict_setdefault (self, dict_observer, key, value):
self._steps.append((self.dict_setdefault_undo, (dict_observer, key)))
def dict_setdefault_undo (self, dict_observer, key):
value = dict.__getitem__(dict_observer, key)
dict.__delitem__(dict_observer, key)
return(self.dict_setdefault_redo, (dict_observer, key, value))
def dict_setdefault_redo (self, dict_observer, key, value):
dict.__setitem__(dict_observer, key, value)
return(self.dict_setdefault_undo, (dict_observer, key))
def dict_clear (self, dictionary, oldvalue):
self._steps.append((self.dict_clear_undo, (dictionary, oldvalue)))
def dict_clear_undo (self, dictionary, oldvalue):
dict.update(dictionary, oldvalue)
return self.dict_clear_redo, (dictionary, )
def dict_clear_redo (self, dictionary):
dict.clear(dictionary)
return self.dict_clear_undo, (dictionary, )
def dict_del (self, dict_observer, key, oldvalue):
self._steps.append((self.dict_del_undo, (dict_observer, key, oldvalue)))
def dict_del_undo (self, dict_observer, key, oldvalue):
dict.__setitem__(dict_observer, key, oldvalue)
return self.dict_del_redo, (dict_observer, key, oldvalue)
def dict_del_redo (self, dict_observer, key, oldvalue):
oldvalue = dict.__getitem__(dict_observer, key)
dict.__delitem__(dict_observer, key)
return self.dict_del_undo, (dict_observer, key, oldvalue)
dict_pop = dict_del
def dict_popitem (self, dict_observer, key, oldvalue):
self._steps.append((self.dict_del_undo, (dict_observer, key, oldvalue)))
# The undo machinery
def add_undo_step (self, undo_step):
"""
Add an undo step to the undoer.
undo_step should be a tuple (function, arguments).
function(*arguments) should undo something, and return the tuple for the redo.
The redo function, in turn, should return the tuple for the undo.
"""
self._steps.append(undo_step)
# Queries
def canUndo (self):
return self._commands[self._index]is not None and len(self._steps)==0
def canRedo (self):
return self._commands[self._index+1]is not None and len(self._steps)==0
def commands (self):
return len(self._commands)-2
def commands_to_undo (self):
return self._index
def commands_to_redo (self):
return self.commands()-self._index
def steps_stored (self):
"""
Return the total number of steps stored in the undoer.
"""
result = 0
for command in self._commands[1:-1]:
result+=len(command)
return result
def print_commands (self, comment=''):
"""
Print a readable list of all commands.
Debugging aid.
"""
print "===== Commands: %s ========"%comment
for i in range(1, len(self._commands)-1):
# The first and last entry are sentinels.
print "Command", i
steps = self._commands[i]
if steps:
for step in steps:
function, args = step
print " ", function.__name__, args
print "========================"
# End of query methods.
def mark (self):
"""
The current (user level) commmand ends.
"""
self._commands[self._index+1:] =[self._steps, None]
self._index+=1
self._steps =[]
def undo (self):
assert self.canUndo()
self._commands[self._index] = self.run_commands(self._commands[self._index])
self._index-=1
def redo (self):
assert self.canRedo()
self._commands[self._index+1] = self.run_commands(self._commands[self._index+1])
self._index+=1
def rollback (self):
self.run_commands(self._steps)
def run_commands (self, steps):
"""
Run the undo / redo _steps.
Returns the list of steps to redo / undo the steps just made.
"""
steps.reverse()
return[func(*args) for func, args in steps]
|
The requirements of this module are described in the docstrings.
If you can meet the requirements of this module, then implementing undo with this module is very easy. The convenience, however, comes at a price: the undo information is recorded at the lowest possible level.
If you want to reduce the overhead, or memory consumption of your application, you might think of using higher level undo and redo functions. The framework provided here might still be usefull. You could even apply some hybrid approach: recording changes to some infrequently changed attributes by this automated mechanism, while coding changes for other attributes explicitly.
One area where this approach might perform poorly is if you have long strings which are incrementally changed. In this case, you can either code higher level operations, or you might try the Python difflib to automatically compress the undo data.
One side application of this module is in transaction like processing: if some command does not go through, and throws an exception, you can use the "rollback" function to undo all changes.
This is great and works very well. There is a bug that I don't know how to fix though:
Line 165 references an undefined variable "internal_attributename". This throws an exception when calling 'disable' to temporarily disable undo/redo. I'm not sure what to about internal_attributename to fix this.